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Chapter 9 and Chapter 1 from reader
• OUTLINE

– Phasors as notation for Sinusoids
– Arithmetic with Complex Numbers
– Complex impedances 
– Circuit analysis using complex impdenaces
– Dervative/Integration as multiplication/division
– Phasor Relationship for Circuit Elements
– Frequency Response and Bode plots

• Reading
– Chapter 9 from your book
– Chapter 1 from your reader 
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Types of Circuit Excitation

Linear Time-
Invariant
Circuit

Steady-State Excitation

Linear Time-
Invariant
Circuit

OR

Linear Time-
Invariant
Circuit

Digital
Pulse
Source

Transient Excitation

Linear Time-
Invariant
Circuit

Sinusoidal (Single-
Frequency) Excitation

AC Steady-State

(DC Steady-State)
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Why is Single-Frequency Excitation Important?

• Some circuits are driven by a single-frequency 
sinusoidal source.  

• Some circuits are driven by sinusoidal sources 
whose frequency changes slowly over time.

• You can express any periodic electrical signal as 
a sum of single-frequency sinusoids – so you 
can analyze the response of the (linear, time-
invariant) circuit to each individual frequency 
component and then sum the responses to get 
the total response.

• This is known as Fourier Transform and is 
tremendously important to all kinds of engineering 
disciplines!
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Representing a Square Wave as a Sum of  Sinusoids

(a)Square wave with 1-second period.  (b)  Fundamental component 
(dotted) with 1-second period, third-harmonic (solid black) with1/3-second 
period, and their sum (blue).  (c)  Sum of first ten components. (d) 
Spectrum with 20 terms.
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Steady-State Sinusoidal Analysis
• Also known as AC steady-state
• Any steady state voltage or current in a linear circuit with 

a sinusoidal source is a sinusoid.
– This is a consequence of the nature of particular solutions for 

sinusoidal forcing functions.

• All AC steady state voltages and currents have the same 
frequency as the source.

• In order to find a steady state voltage or current, all we 
need to know is its magnitude and its phase relative to 
the source 
– We already know its frequency.

• Usually, an AC steady state voltage or current is given 
by the particular solution to a differential equation.
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Example 1: 2nd Order RLC Circuit

R
+

-
CVs L

t=0
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Example 2: 2nd Order RLC Circuit

R
+

-
CVs L

t=0
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Sinusoidal Sources Create Too Much Algebra

)cos()sin()( wtBwtAtxP +=

)cos()sin()()( wtFwtF
dt

tdxtx BA
P

P +=+τ

)cos()sin())cos()sin(())cos()sin(( wtFwtF
dt

wtBwtAdwtBwtA BA +=
+

++ τ

Guess a solution

Equation holds for all time 
and time variations are 

independent and thus each 
time variation coefficient is 

individually zero

0)cos()()sin()( =−++−− wtFABwtFBA BA ττ

0)( =−+ BFAB τ
0)( =−− AFBA τ

12 +
+

=
τ

τ BA FFA
12 +

−
−=

τ
τ BA FFB

Dervatives
Addition

Two terms to be general

Phasors (vectors that rotate in the complex 
plane) are a clever alternative.
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Complex Numbers (1)
• x is the real part
• y is the imaginary part
• z is the magnitude
• θ is the phase

( 1)j = −

θ

z

x

y

real 
axis

imaginary 
axis

• Rectangular Coordinates 
Z = x + jy

• Polar Coordinates: 
Z = z ∠ θ

• Exponential Form: 

θcoszx = θsinzy =

22 yxz +=
x
y1tan−=θ

(cos sin )z jθ θ= +Z

j je zeθ θ= =Z Z

0

2

1 1 1 0

1 1 90

j

j

e

j e
π

= = ∠ °

= = ∠ °
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Complex Numbers (2)

2 2

cos
2

sin
2

cos sin

cos sin 1

j j

j j

j

j

e e

e e
j

e j

e

θ θ

θ θ

θ

θ

θ

θ

θ θ

θ θ

−

−

+
=

−
=

= +

= + =

j je ze zθ θ θ= = = ∠Z Z

Euler’s Identities

Exponential Form of a complex number
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Arithmetic With Complex Numbers
• To compute phasor voltages and currents, we 

need to be able to perform computation with 
complex numbers.
– Addition
– Subtraction
– Multiplication
– Division

• (And later use multiplication by jω to replace 
– Diffrentiation
– Integration
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Addition

• Addition is most easily performed in 
rectangular coordinates:

A = x + jy
B = z + jw

A + B = (x + z) + j(y + w)
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Addition

Real 
Axis

Imaginary 
Axis

AB

A + B
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Subtraction

• Subtraction is most easily performed in 
rectangular coordinates:

A = x + jy
B = z + jw

A - B = (x - z) + j(y - w)
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Subtraction

Real 
Axis

Imaginary 
Axis

AB

A - B
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Multiplication

• Multiplication is most easily performed in 
polar coordinates:

A = AM ∠ θ
B = BM ∠ φ

A × B = (AM × BM) ∠ (θ + φ)
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Multiplication

Real 
Axis

Imaginary 
Axis

A

B
A × B
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Division

• Division is most easily performed in polar 
coordinates:

A = AM ∠ θ
B = BM ∠ φ

A / B = (AM / BM) ∠ (θ − φ)
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Division

Real 
Axis

Imaginary 
Axis

A

B

A / B
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Arithmetic Operations of Complex Numbers

• Add and Subtract: it is easiest to do this in rectangular 
format
– Add/subtract the real and imaginary parts separately

• Multiply and Divide: it is easiest to do this in 
exponential/polar format
– Multiply (divide) the magnitudes
– Add (subtract) the phases

1

2

1 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

2 1 1 2 2 1 1 2 2

2 1 1 2 2 1 1 2 2
( )

2 1 2 1 2 1 2

2 1 2

cos sin

cos sin
( cos cos ) ( sin sin )
( cos cos ) ( sin sin )

( ) ( ) ( )

/ ( / )

j

j

j

z e z z jz

z e z z jz
z z j z z
z z j z z

z z e z z

z z e

θ

θ

θ θ

θ θ θ

θ θ θ
θ θ θ θ
θ θ θ θ

θ θ+

= = ∠ = +

= = ∠ = +
+ = + + +
− = − + −

× = × = × ∠ +

=

1

1

1

1

1

Z

Z
Z Z
Z Z

Z Z

Z Z 1 2( )
1 2 1 2( / ) ( )j z zθ θ θ θ− = ∠ −
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Phasors
• Assuming a source voltage is a sinusoid time-

varying function
v(t) = V cos (ωt + θ)

• We can write:

• Similarly, if the function is v(t) = V sin (ωt + θ)

( ) ( )( ) cos( ) Re Rej t j t

j

v t V t V e Ve

Define Phasor as Ve V

ω θ ω θ

θ

ω θ

θ

+ +⎡ ⎤ ⎡ ⎤= + = =⎣ ⎦ ⎣ ⎦
= ∠

( )

( )
2

2

( ) sin( ) cos( ) Re
2

j t
v t V t V t Ve

Phasor V

πω θ

π
θ

πω θ ω θ
+ −

−

⎡ ⎤
= + = + − = ⎢ ⎥

⎣ ⎦

= ∠
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Phasor: Rotating Complex Vector

Real 
Axis

Imaginary 
Axis

V

{ } )( tjjwtj eeVetVtv ωφφω VReRe)cos()( ==+=

Rotates at uniform 
angular velocity ωt

cos(ωt+φ)

The head start angle is φ.
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Complex Exponentials
• We represent a real-valued sinusoid as the real 

part of a complex exponential after multiplying 
by      .

• Complex exponentials 
– provide the link between time functions and phasors.
– Allow dervatives and integrals to be replaced by 

multiplying or dividing by jω
– make solving for AC steady state simple algebra with 

complex numbers.
• Phasors allow us to express current-voltage 

relationships for inductors and capacitors much 
like we express the current-voltage relationship 
for a resistor.

tje ω
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I-V Relationship for a Capacitor

Suppose that v(t) is a sinusoid:
v(t) = Re{VM ej(ωt+θ)}

Find i(t).

C v(t)

+

-

i(t)

dt
tdvCti )()( =
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Capacitor Impedance (1)

C v(t
)

+

-

i(t)
dt

tdvCti )()( =

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) cos( )
2

( )( )
2 2

sin( ) cos( )
2 2

(

2

j t j t

j t j t j t j t

j t j t

c

Vv t V t e e

dv t CV d CVi t C e e j e e
dt dt

CV e e CV t CV t
j

V VZ
CVI

ω θ ω θ

ω θ ω θ ω θ ω θ

ω θ ω θ

ω θ

ω

ω πω ω θ ω ω θ

θ θ θ
π ωθ

+ − +

+ − + + − +

+ − +

⎡ ⎤= + = +⎣ ⎦

⎡ ⎤ ⎡ ⎤= = + = −⎣ ⎦ ⎣ ⎦

− ⎡ ⎤= − = − + = + +⎣ ⎦

∠
= = = ∠ −

⎛ ⎞∠ +⎜ ⎟
⎝ ⎠

V
I

1 1 1) ( )
2 2

j
C C j C

π π
ω ω ω

− = ∠ − = − =
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Capacitor Impedance (2)

C v(t
)

+

-

i(t)
dt

tdvCti )()( =

( )

( )
( )

( ) cos( ) Re

( )( ) Re Re

1( )

j t

j t
j t

c

v t V t Ve V

dv t dei t C CV j CVe I
dt dt
V VZ
I j CV j C

ω θ

ω θ
ω θ

ω θ θ

ω θ

θ θ θ
θ ω ω

+

+
+

⇒

⇒

⎡ ⎤= + = = ∠⎣ ⎦
⎡ ⎤

⎡ ⎤= = = = ∠⎢ ⎥ ⎣ ⎦
⎣ ⎦

∠
= = = ∠ − =

∠

V

I

V
I

Phasor definition
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Example

v(t) = 120V cos(377t + 30°)
C = 2µF

• What is V?
• What is I?

• What is i(t)?
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Computing the Current

ωj
dt
d

⇒

Note: The differentiation and integration 
operations become algebraic operations

ωj
dt 1

⇒∫
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Inductor Impedance 

V = jωL I

L v(t)

+

-

i(t)

dt
tdiLtv )()( =
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Example

i(t) = 1µA cos(2π 9.15 107t + 30°)
L = 1µH

• What is I?
• What is V?

• What is v(t)?
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-2

0
0 0.01 0.02 0.03 0.04 0.05

Phase

7sin( ) 7cos( ) 7
2 2

t t π πω ω ⎛ ⎞= − = ∠ −⎜ ⎟
⎝ ⎠

7cos( ) 7 0tω = ∠ °

7sin( ) 7cos( ) 7
2 2

t t π πω ω ⎛ ⎞− = + = ∠ +⎜ ⎟
⎝ ⎠

capacitor current

inductor current
Voltage

Behind

t

lead
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Phasor Diagrams

• A phasor diagram is just a graph of 
several phasors on the complex plane 
(using real and imaginary axes).

• A phasor diagram helps to visualize the 
relationships between currents and 
voltages.

• Capacitor: I leads V by 90o

• Inductor: V leads I by 90o
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Impedance

• AC steady-state analysis using phasors
allows us to express the relationship 
between current and voltage using a 
formula that looks likes Ohm’s law:

V = I Z
• Z is called impedance.
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Some Thoughts on Impedance

• Impedance depends on the frequency ω.
• Impedance is (often) a complex number.
• Impedance allows us to use the same 

solution techniques for AC steady state as 
we use for DC steady state.
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Example: Single Loop Circuit

20kΩ
+

-
1µF10V ∠ 0° VC

+

-

f=60 Hz, VC=?

How do we find VC?
First compute impedances for resistor and capacitor:
ZR = R= 20kΩ = 20kΩ ∠ 0°
ZC = 1/j (2πf x 1µF) = 2.65kΩ ∠ -90°
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Impedance Example
20kΩ ∠ 0°

+

-
2.65kΩ ∠ -90°10V ∠ 0° VC

+

-

Now use the voltage divider to find VC:

⎟
⎠
⎞

⎜
⎝
⎛

°∠Ω+°∠Ω
°∠Ω

°∠=
0k2090-k65.2

90-k65.20 10VCV

°∠= 4.82- 1.31VCV
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What happens when ω changes?

20kΩ
+

-
1µF10V ∠ 0° VC

+

-

ω = 10
Find VC



Slide 38EE100 Summer 2008 Bharathwaj Muthuswamy

Circuit Analysis Using Complex Impedances
• Suitable for AC steady state.
• KVL

• Phasor Form KCL
• Use complex impedances for inductors and capacitors and 

follow same analysis as in chap 2.

( ) ( ) ( )
31 2

31 2

1 2 3

1 1 2 2 3 3

( )( ) ( )
1 2 3

( )( ) ( )
1 2 3

( ) ( ) ( ) 0
cos cos cos 0

Re 0

0
0

j tj t j t

jj j

v t v t v t
V t V t V t

V e V e V e

V e V e V e

ω θω θ ω θ

θθ θ

ω θ ω θ ω θ
++ +

+ + =

+ + + + + =

⎡ ⎤+ + =⎣ ⎦

+ + =
=1 2 3V + V + V

Phasor Form KVL

0=1 2 3I + I + I
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Steady-State AC Analysis

Find v(t) for ω=2π 3000

1kΩ
0.1µF

5mA ∠ 0°

+

-

V

1kΩ
-j530kΩ5mA ∠ 0°

+

-

V
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Find the Equivalent Impedance

5mA ∠ 0°

+

-

VZeq

( )
°−∠

°−∠×°∠
=

−
−

=
9.271132

90530010
5301000
5301000 3

j
j

eqZ

°−∠Ω= 1.622.468eqZ

°−∠Ω×°∠== 1.622.4680mA5eqIZV

°−∠= 1.62V34.2V

)1.623000t(2cosV34.2)( °−= πtv
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Change the Frequency

Find v(t) for ω=2π 455000

1kΩ
0.1µF

5mA ∠ 0°

+

-

V

1kΩ

-j3.5Ω
5mA ∠ 0°

+

-

V
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Find an Equivalent Impedance

5mA ∠ 0°

+

-

VZeq

( )
°−∠

°−∠×°∠
=

−
−

=
2.01000

905.3010
5.31000
5.31000 3

j
j

eqZ

°−∠Ω= 8.895.3eqZ

°−∠Ω×°∠== 8.895.30mA5eqIZV

°−∠= 8.89mV5.17V
)8.89455000t(2cosmV5.17)( °−= πtv
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Series Impedance

Zeq = Z1 + Z2 + Z3

Zeq

Z1

Z3

Z2

L2L1

Zeq = jω(L1+L2)

For example: 

1 2

1 1
eq j C j Cω ω

= +Z

C1 C2
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Parallel Impedance

1/Zeq = 1/Z1 + 1/Z2 + 1/Z3

Z3Z1 Z2 Zeq

C1 C2

1 2

1
( )eq j C Cω

=
+

Z

For example: 

L2L1

1 2

1 2( )eq
L Lj

L L
ω=

+
Z
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Steady-State AC Node-Voltage Analysis

CI0sin(ωt) I1cos(ωt)
R L

• Try using Thevinin equivalent circuit.

• What happens if the sources are at different 
frequencies?

+ -
VC
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Resistor I-V relationship
vR = iRR ………….VR = IRR where R is the resistance in ohms,

VR = phasor voltage, IR = phasor current
(boldface indicates complex quantity)

Capacitor I-V relationship
iC = CdvC/dt ...............Phasor current IC = phasor voltage VC /

capacitive impedance ZC: IC = VC/ZC 
where ZC = 1/jωC , j = (-1)1/2 and boldface 

indicates complex quantity

Inductor I-V relationship
vL = LdiL/dt ...............Phasor voltage VL = phasor current IL/

inductive impedance ZL VL = ILZL
where ZL = jωL, j = (-1)1/2 and boldface 

indicates complex quantity
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0 0( ) cos( )v t V tω=

0
0 0VI

R
= ∠

0 0 0V V= ∠

0 0 90I CVω= ∠ 0
0 90VI

Lω
= ∠ −

0 0( ) cos( )v t V tω=

0
0 ( ) sin( )Vi t t

L
ω

ω
=0 0( ) sin( )i t CV tω ω= −0

0 ( ) cos( )Vi t t
R

ω=

0 0( ) cos( )v t V tω=

0 0 0V V= ∠ 0 0 0V V= ∠

LCR
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Thevenin Equivalent

f=60 Hz

4.8231.1
0k2090-k65.2

90-k65.20 10V −∠=⎟
⎠
⎞

⎜
⎝
⎛

°∠Ω+°∠Ω
°∠Ω

°∠== OCTH VV

20kΩ
+

-
1µF

10V ∠ 0°

VC

+

-

ZR = R= 20kΩ = 20kΩ ∠ 0°
ZC = 1/j (2πf x 1µF) = 2.65kΩ ∠ -90°

+

-

ZTH

VTH

4.8262.2
0k2090-k65.2

90-k65.20k20 || C −∠=⎟
⎠
⎞

⎜
⎝
⎛

°∠Ω+°∠Ω
°∠Ω⋅°∠Ω

°== ZZZ RTH
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Chapter 6

• OUTLINE
– Frequency Response for Characterization
– Asymptotic Frequency Behavior
– Log magnitude vs log frequency plot
– Phase vs log frequency plot
– dB scale
– Transfer function example
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Bel and Decibel (dB)

• A bel (symbol B) is a unit of measure of ratios of power
levels, i.e. relative power levels. 
– The name was coined in the early 20th century in honor of 

Alexander Graham Bell, a telecommunications pioneer. 
– The bel is a logarithmic measure. The number of bels for a given 

ratio of power levels is calculated by taking the logarithm, to the 
base 10, of the ratio. 

– one bel corresponds to a ratio of 10:1. 
– B = log10(P1/P2) where P1 and P2 are power levels. 

• The bel is too large for everyday use, so the decibel 
(dB), equal to 0.1B, is more commonly used. 
– 1dB = 10 log10(P1/P2)

• dB are used to measure 
– Electric power, Gain or loss of amplifiers, Insertion loss of filters.
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Logarithmic Measure for Power

• To express a power in terms of decibels, one starts by 
choosing a reference power, Preference, and writing

Power P in decibels = 10 log10(P/Preference)
• Exercise:  

– Express a power of 50 mW in decibels relative to 1 watt.  
– P (dB) =10 log10 (50 x 10-3) = - 13 dB  

• Exercise:  
– Express a power of 50 mW in decibels relative to 1 mW.
– P (dB) =10 log10 (50) = 17 dB. 

• dBm to express absolute values of power relative to a 
milliwatt. 
– dBm = 10 log10 (power in milliwatts / 1 milliwatt) 
– 100 mW = 20 dBm
– 10 mW = 10 dBm
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From the expression for power ratios in decibels, we can 
readily derive the corresponding expressions for voltage 
or current ratios.

Suppose that the voltage V (or current I) appears across 
(or flows in) a resistor whose resistance is R. The 
corresponding power dissipated, P, is V2/R (or I2R). We 
can similarly relate the reference voltage or current to the 
reference power, as

Preference = (Vreference)2/R or Preference= (Ireference)2R.

Hence,
Voltage, V in decibels = 20log10(V/Vreference)
Current, I, in decibels = 20log10(I/Ireference)

Logarithmic Measures for Voltage or Current
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Note that the voltage and current expressions are just 
like the power expression except that they have 20 as 
the multiplier instead of 10 because power is 
proportional to the square of the voltage or current.

Exercise:  How many decibels larger is the voltage of a 
9-volt transistor battery than that of a 1.5-volt AA 
battery? Let Vreference = 1.5.  The ratio in decibels is

20 log10(9/1.5) = 20 log10(6) = 16 dB.

Logarithmic Measures for Voltage or Current
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The gain produced by an amplifier or the loss of a filter 
is often specified in decibels.

The input voltage (current, or power) is taken as the 
reference value of voltage (current, or power) in the 
decibel defining expression:

Voltage gain in dB = 20 log10(Voutput/Vinput)
Current gain in dB = 20log10(Ioutput/Iinput

Power gain in dB = 10log10(Poutput/Pinput)

Example:  The voltage gain of an amplifier whose input 
is 0.2 mV and whose output is 0.5 V is 

20log10(0.5/0.2x10-3) = 68 dB.

Logarithmic Measures for Voltage or Current
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Bode Plot

• Plot of magnitude of transfer function vs. 
frequency 
– Both x and y scale are in log scale
– Y scale in dB

• Log Frequency Scale 
– Decade Ratio of higher to lower frequency 

= 10 
– Octave Ratio of higher to lower frequency 

= 2 
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Frequency Response

• The shape of the frequency response of the complex 
ratio of phasors VOUT/VIN is a convenient means of 
classifying a circuit behavior and identifying key 
parameters.

Frequency

Low Pass

IN

OUT

V
V

Gain
Break point

IN

OUT

V
V

Frequency

High Pass

Gain

Break point

FYI: These are log ratio vs log frequency plots
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Example Circuit
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ZZ
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A = 100
R1 = 100,000 Ohms

R2 = 1000 Ohms

C = 10 uF
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Break Point Values

• When dealing with resonant circuits it is convenient 
to refer to the frequency difference between points at 
which the power from the circuit is half that at the 
peak of resonance.  

• Such frequencies are known as “half-power 
frequencies”, and the power output there referred to 
the peak power (at the resonant frequency) is

• 10log10(Phalf-power/Presonance) = 10log10(1/2) = -3 dB.
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Example: Circuit in Slide #3 Magnitude
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Example: Circuit in Slide #3 Phase
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Bode Plot: Label as dB
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Note: Magnitude in dB = 20 log10(VOUT/VIN)
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Transfer Function

• Transfer function is a function of frequency
– Complex quantity
– Both magnitude and phase are function of 

frequency

Two Port 
filter networkVin Vout

( )( )

( )

out
out in

in

Vf
V

H f

θ θ

θ

= = ∠ −

= ∠

out

in

VH
V

H(f)
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Filters

• Circuit designed to retain a certain 
frequency range and discard others
Low-pass: pass low frequencies and reject high 

frequencies
High-pass: pass high frequencies and reject low 

frequencies
Band-pass: pass some particular range of 

frequencies, reject other frequencies outside 
that band

Notch: reject a range of frequencies and pass 
all other frequencies
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Common Filter Transfer Function vs. Freq
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First-Order Lowpass Filter
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First-Order Highpass Filter
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First-Order Lowpass Filter
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First-Order Highpass Filter
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First-Order Filter Circuits

L
+
–

VS
C

R

Low Pass

High 
Pass

HR = R / (R + jωL)

HL = jωL / (R + jωL)

+
–

VS
R

High Pass

Low 
Pass

HR = R / (R + 1/jωC)

HC = (1/jωC) / (R + 1/jωC)
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Change of Voltage or Current with
A Change of Frequency

One may wish to specify the change of a quantity 
such as the output voltage of a filter when the 
frequency changes by a factor of 2 (an octave) or 10 
(a decade).

For example, a single-stage RC low-pass filter has at 
frequencies above ω = 1/RC an output that changes 
at the rate -20dB per decade.
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High-frequency asymptote of Lowpass filter
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The high frequency asymptote of magnitude 
Bode plot assumes -20dB/decade slope
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Low-frequency asymptote of Highpass filter

f → ∞
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The low frequency asymptote of magnitude 
Bode plot assumes 20dB/decade slope
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Second-Order Filter Circuits

C
+
–

VS

R

Band Pass

Low 
Pass

LHigh 
Pass

Band 
Reject

Z = R + 1/jωC + jωL

HBP = R / Z

HLP = (1/jωC) / Z

HHP = jωL / Z

HBR = HLP + HHP
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Series Resonance
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VIN

VOUT

+

Voltage divider

Substitute branch elements

Arrange in resonance form

Maximum when w2 = 1/(LC)

Resonance quality factor

R
LQ ω

=

Ratio of reactance to resistance 

Closely related to number 
of round trip cycles before 
1/e decay.

Bandwidth is f0/Q 
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Parallel Resonance
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Admittance

Substitute branch elements

Arrange in resonance form

Maximum = IS/R when w2 = 1/(LC)

Resonance quality factor

R
LQ ω

=

Ratio of reactance to resistance 

Closely related to number 
of round trip cycles before 
1/e decay.

Bandwidth is f0/Q 


