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Chapters 6 and 7

— The capacitor
— The inductor
— RC and RL circuits
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The Capacitor

Two conductors (a,b) separated by an insulator:
difference in potential =V,
=> equal & opposite charge Q on conductors

Q — Cvab (stored charge in terms of voltage)

where C is the capacitance of the structure,
» positive (+) charge is on the conductor at higher potential

Parallel-plate capacitor:
« area of the plates = A (m?)
* separation between plates = d (m)

« dielectric permittivity of insulator = ¢
(F/m)

Conducting
plates

=> capacitance
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Capacitor

Svymbol: | or |f * C
. | \ -
C C Electrolytic (polarized)
capacitor

Units: Farads (Coulombs/Volt)

(typical range of values: 1 pFto 1 uF; for “supercapa-
citors” up to a few F!)

Current-Voltage relationship:

B
. d dv dC o
|C=—Q=C =+ V, — l_+
dt dt dt —T~ V.
If C (geometry) is unchanging, 1. = C dv/dt -
o

Note: Q (v.) must be a continuous function of time
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Voltage in Terms of Current

Q(t) = [i,(H)dt+Q(0)

1
C

V_(t) = éj i (t)dt + Q((:O) — jic(t)dt +v_(0)

Uses: Capacitors are used to store energy for camera flashbulbs,
In filters that separate various frequency signals, and
they appear as undesired “parasitic”’ elements in circuits where
they usually degrade circuit performance
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Stored Energy

CAPACITORS STORE ELECTRIC ENERGY

You might think the energy stored on a capacitor is QV =
CV?, which has the dimension of Joules. But during

charging, the average voltage across the capacitor was
only half the final value of V for a linear capacitor.

Thus, energy is lqv: Leov?
2 2

Example: A 1 pF capacitance charged to 5 Volts
has %(5V)? (1pF) =12.5 pJ
(A 5F supercapacitor charged to 5
volts stores 63 J; if it discharged at a
constant rate in 1 ms energy is
discharged at a 63 kW rate!)
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A more rigorous derivation

®
IC
This derivation holds l_ N
independent of the circuit! T
®
t = tFinal . V= VFinal dQ V= VFinal
w= [ v i dt=  [v, Edt: [v,dQ
U=t V= Vil V= Viita
V= Vi 1 1
W= JCv, dv, :_CVFinalz - _CVInitia12
B 2 2
V= Visigal
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Example: Current, Power & Energy for a Capacitor

_lt. i0—
vit)=— | I(0)d 7 +v(0
‘v (t) CW) 7 +V(0) Vﬁ)@) Lo

t(ps)
i (LA V. and g must be continuous
/\(M ) I . dV functions of tlme, hOwever,
T — N | . can be discontinuous.
dt c
| | | | —> 1 (us
0 1 2 3 4 5 (1)

Note: In “steady state”
1 (dc operation), time
derivatives are zero
T - Cis an open circuit
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i()—

v(t) j> —— 10 uF

0 ] 2 3
w (J)
0o 1 2 3 '
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+ vi(t) = + vy(t) -

Capacitors in Series

+

— V(t)=v, (+v,(0)

i
A C C . A
oD " % =00 oz
1 1 1
=—+
Cq G G,
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Capacitive Voltage Divider

Q: Suppose the voltage applied across a series combination
of capacitors is changed by Av. How will this affect the
voltage across each individual capacitor?

e, AV = AV, + AV,
Q. +*AQ,| «+ Note thgt no net charge_ can
Cy == v,+Av, [ can be introduced to this node.

V+AV <+> -Q,~AQ, | _ Therefore, ~AQ,+AQ,=0
o
Q2+AQ2 +

= CAv, =C,Av,
C, —— Va()+Av, C
_Q,-AQ,| - AV, =—L—Av
i > ¢, +C,

AQ,=CLAV; Note: Capacitors in series have the same incremental

- charge.
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Inductor

Svymbol: —Y "
L

Units: Henrys (Volts e second / Ampere)

(typical range of values: uH to 10 H)

Current in terms of voltage:

] L
di, =, (e 1

iL<t>=HvL<r>dr+i<to>

Note: i, must be a continuous function of time
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Stored Energy

| INDUCTORS STORE MAGNETIC ENERGY |
Consider an inductor having an initial current i(t,) = I,

p(t) = v(DI(t) =

w(t)= | p(r)dr =

1 -2 1 - 2
w(t)=—LI1"—— LI
(1) 5 5 L
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Inductors in Series and Parallel

+ il -
IR SRS

1) "

+ wlf) -

O

N b
J

Ly

= 1if) ;:;'
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Summary

Capacitor
1=C ﬂ CW = le
dt’ 2

v cannot change instantaneously
| can change instantaneously

Do not short-circuit a charged
capacitor (-> infinite current!)

ncap.’s in series: — =) —
i i

ncap.’s in parallel: C,, = Zci

In steady state (not time-varying),

a capacitor behaves like an open
circuit.

Inductor
di 1

=L—; w=—Lj?
dt’ 2

| cannot change instantaneously
Vv can change instantaneously

Do not open-circuit an inductor with
current (-> infinite voltage!)

nind.’sin series: |, = Z L.
1 1
nind.’s in parallel: L—eq Zf

In steady state, an inductor
behaves like a short circuit.
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First-Order Circuits

A circuit that contains only sources, resistors
and an inductor is called an RL circuit.

A circuit that contains only sources, resistors
and a capacitor is called an RC circulit.

 RL and RC circuits are called first-order circuits
because their voltages and currents are
described by first-order differential equations.
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Response of a Circuit

« Transient response of an RL or RC circuit is

— Behavior when voltage or current source are suddenly
applied to or removed from the circuit due to switching.

— Temporary behavior

« Steady-state response (aka. forced response)
— Response that persists long after transient has decayed

« Natural response of an RL or RC circuit is

— Behavior (i.e., current and voltage) when stored energy
In the inductor or capacitor is released to the resistive
part of the network (containing no independent
sources).
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Natural Response Summary

RL Circuit
|
L R

 |Inductor current
cannot change
Instantaneously

* |n steady state, an
iInductor behaves like
a short circuit.
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RC Circuit

+
C/-\V R

Capacitor voltage
cannot change
iInstantaneously

In steady state, a
capacitor behaves like
an open circuit
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First Order Circuits

(0 e
v (t) :T Ve(D) it <> R L2 v ()
KVL around the loop: KCL at the node:
Vi(t) + ve(t) = v(t) V(t) _[V(X)dx =1 (1)
dv_(t)
RC— t)=v.(t
0=V II; dlat(t) OO
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Procedure for Finding Transient Response

1. Identify the variable of interest
* For RL circuits, it is usually the inductor current i (t)
« For RC circuits, it is usually the capacitor voltage v (t)

2. Determine the initial value (at t =t, and t,*) of
the variable

« Recall that i (t) and v(t) are continuous variables:
IL(6") =1.(t7) and v (t") = v(t)

* Assuming that the circuit reached steady state before
t,, use the fact that an inductor behaves like a short
circuit in steady state or that a capacitor behaves like
an open circuit in steady state
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Procedure (cont'd)

3. Calculate the final value of the variable

(its value as t = =)

« Again, make use of the fact that an inductor
behaves like a short circuit in steady state (t 2 )
or that a capacitor behaves like an open circuit in

steady state (t > x)

4. Calculate the time constant for the circuit

7=L/R for an RL circuit, where R is the Thévenin
equivalent resistance “seen” by the inductor

7=RC for an RC circuit where R is the Thévenin
equivalent resistance “seen” by the capacitor
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Natural Response of an RC Circuit

« Consider the following circuit, for which the switch is
closed for t < 0, and then opened at t = O:

W
v()

1

0

< + |l

Notation:
0~ is used to denote the time just prior to switching
0" is used to denote the time immediately after switching

* The voltage on the capacitoratt=0-is V,
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Solving for the Voltage (t > 0)

« Fort> 0, the circuit reduces to

/\N\/i |

* Applying KCL to the RC circuit:

e Solution:

v(t) =v(0)e "
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Solving for the Current (t > 0)

/\N\/i |

R +

Vo t) C ———V R% V(t) :VOe‘t/RC

* Note that the current changes abruptly:

i(0)=0
for t> 0, i(t):l:\ie—t/RC
R R
: V
= (0=
(07) o
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Solving for Power and Energy Delivered (t > 0)

/\N\/i |

R +

VOCD o C—=v R% v(t)=V e "¢
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Natural Response of an RL Circuit

« Consider the following circuit, for which the switch is
closed for t < 0, and then opened att = 0:

et

t=0 i— +

|, C) R, L R=V

Notation:
0~ is used to denote the time just prior to switching
0* is used to denote the time immediately after switching

* t<0 the entire system is at steady-state; and the inductor
Is = like short circuit

* The current flowing in the inductor att=0-is I, and V
across is 0.

EE100 Summer 2008 Slide 25 Bharathwaj Muthuswamy




Solving for the Current (t > 0)

« Fort> 0, the circuit reduces to

D = g o=

* Applying KVL to the LR circuit:

« v(D)=iI(t)R
« Att=0% I=l, _
» At arbitrary t>0, i=i(t) and  v(t) =L d'd(tt)

» Solution: I(t) = i(())e_(R/L)t = |Oe-(R/L)t
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Solving for the Voltage (t > 0)

i(t)=1.e ®/L"

D = o =

* Note that the voltage changes abruptly:
v(i0 )=0

fort >0, v(t)= IR = |ORe—(R/L)t
= v(0")=1I,R
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Solving for Power and Energy Delivered (t > 0)
1(1) = Ioe‘(R/L)t

_|_
|, CD R, L R=V

p _ I2R _ IgRe—2(R/L)t

t t
sz p(X)dXx =j | 2Re™>("DXdx
0 0

:%ng(l—e‘z(m”t)
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Natural Response Summary

RL Circuit RC Circult
| — +

L R C— VR

 Inductor current cannot « Capacitor voltage cannot
change instantaneously change instantaneously

i(07)=i(0") v(07) =v(0")

- - —t/ _

1(t)=1(0)e™"" v(t) =v(0)e™""
» time constant 7 = = + time constant 7 = RC
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Digital Signals

We compute with pulses. 1

We send beautiful pulses in: §
But we receive lousy-looking T%
pulses at the output: £

\

time

|

time—

Capacitor charging effects are responsible!

Every node in a real circuit has capacitance; it's the charging
of these capacitances that limits circuit performance (speed)
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Circuit Model for a Logic Gate

* Recall (from Lecture 1) that electronic building blocks

referred to as “logic gates” are used to implement
logical functions (NAND, NOR, NOT) in digital ICs

— Any logical function can be implemented using these gates.

* A logic gate can be modeled as a simple RC circuit:

R

W

/Vin(t) C) C== Vou

switches between “low” (logic 0)
and “high” (logic 1) voltage states
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Pulse Distortion

R

The input voltage pulse

W

Vin(t) J:rD

width must be large
enough; otherwise the
output pulse is distorted.

(We need to wait for the output to

Pulse width = 0.1RC

Time

EE100 Summer 2008

reach a recognizable logic level,
before changing the input again.)

Pulse width = RC Pulse width = 10RC

6 6

S 5?“"?;5

54 s4/

=HYAN = :

2 N 2;

IS B AN

0* 0 :

0o 1 2 3 4 5 0 5 10 15 20 25
Time Time
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Example

Suppose a voltage pulse of width R
5 us and height 4 V is applied to the ~ Vipe— Vout
input of this circuit beginning att = 0: ——
P JINAINS R=25kQ TC
1=RC=2.5pus C=1nF v

* First, V,, will increase exponentially toward 4 V.

* When V,, goes back down, V_ will decrease exponentially
back downto 0 V.

What is the peak value of V_,?

The output increases for 5 us, or 2 time constants.
- It reaches 1-e or 86% of the final value.
0.86 x4V =3.44V is the peak value
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First Order Circuits: Forced Response

(0 e
v (t) :T Ve(D) it <> R L2 v ()
KVL around the loop: KCL at the node:
Vi(t) + ve(t) = v(t) V(t) IV(X)dX =1 (1)
dv_(t)
RC— t)=v.(t
0=V II; dlat(t) OO
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Complete Solution

« Voltages and currents in a 1st order circuit satisfy a
differential equation of the form

dx(t)
= f(t
it (t)
— f(t) is called the forcing function.

« The complete solution is the sum of particular solution
(forced response) and complementary solution (natural

response). X(t) =X, () + X (1)

— Particular solution satisfies the forcing function

— Complementary solution is used to satisfy the initial conditions.
— The initial conditions determine the value of K.

X(O)+7

ch (t) Homogeneous
(1) Xe O+ dt =0 equation
—=f ()

dt X (t) = Ke™”
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The Time Constant

* The complementary solution for any 1st
order circuit is

X, (t) = Ke™'"

 For an RC circuit, t = RC
* For an RL circuit, t = L/R

EE100 Summer 2008

Slide 36

Bharathwaj Muthuswamy




What Does X_(t) Look Like?

A t/r — 104

1 X, (t)=e T=10
D'B_; 71 1s the amount of time necessary
- for an exponential to decay to

. 36.7% of its 1nitial value.
. * -1/7 1s the 1nitial slope of an

. exponential with an initial value of
0.2 L

0" ‘opoot 00002 , 00003 0 00004 00005

t
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The Particular Solution

» The particular solution x(t) is usually a
weighted sum of f(t) and its first derivative.
» If f(t) is constant, then x(t) is constant.

» If {(t) is sinusoidal, then x,(t) is sinusoidal.

EE100 Summer 2008 Slide 38 Bharathwaj Muthuswamy




The Particular Solution: F(t) Constant

dx; (1)
t P F
Xp(D)+7 dt
Guess a solution
% ()= A+ B (A+Bt)y+c JATBY ¢
Equation holds for all time (A+Bt)+B=F

and time variations are
independent and thus each
time variation coefficient is
individually zero

(A+B-F)+(B)t=0

(B)=0 (A+B-F)=0

B=0 A=F
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The Particular Solution: F(t) Sinusoid

X, () + 7 dxgt(t) — F, sin(wt) + F, cos(wt)

Guess a solution  x, (t) = Asin(wt) + B cos(wt)

(Asin(wt) + B cos(wt)) + 7 3 (ASin(Wt)dr BeostWt) _ £ ginqwt) + F, cos(wt)

(A—7wB - F,)sin(at)+(B+r0wA—-F;)cos(at) =0

(A-twB-F,)=0 (B+twA-F;)=0 Equation holds for all time and
time variations are independent

A= Fy + 70k B—_® Fa—Fg and thus each time variation
(tw)” +1 (tw)” +1 coefficient is individually zero
1 . 1

Xp (1) = e sin(wt) + cos(wt)
J@w)? +1] {J(zw)* +1 J(@w)* +1
1

= cos(wt —0); where 0 = tan"' (rw)

J(zw)? +1
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The Particular Solution: F(t) Exp.

dx, (t
Xo (1) +7 gt( ) =Fe ™ +F,
Guess a solution
—-at
Xp (1) = A+Be ™ (A+&fﬁ+r“A2?3)=ﬁyﬂ+5

Equation holds for all time
and time variations are
1.ndepen.de.nt and thus. each (A—F,)+(B—ar—F)e™ =0
time variation coefficient is
individually zero

(A+Be™)—aBe ™ =Fe ™ +F,

(B—ar—F)=0

B=ar+FI
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The Total Solution: F(t) Sinusoid

Xo (1) +7 dxgt(t) = F, sin(wt) + F; cos(wt)

. A_FA+Ta)FB B__m)FA—FB
X5 (1) = Asin(wt) + B cos(wt) - (t)? +1 - (tw)’ +1

X.(t) = Ke /¢

X; (t) = Asin(wt) + B cos(wt) + Ke_%

Only K 1s unknown and
1s determined by the

initial condition at t =0 Example: x(t=0) = V(t=0)
X (0) = Asin(0)+ B cos(0) + Ke /% =V._(t = 0)
X (0)=B+K =V, (t=0) K=V.(t=0)-B
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+ +
WO o

» Given v (07)=1,V =2 cos(at), &=200.
» Find i(t), v (t)="
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