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Chapters 6 and 7

• Outline
– The capacitor
– The inductor
– RC and RL circuits
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The Capacitor
Two conductors (a,b) separated by an insulator:

difference in potential = Vab
=> equal & opposite charge Q on conductors

Q = CVab

where C is the capacitance of the structure, 
positive (+) charge is on the conductor at higher potential

Parallel-plate capacitor:
• area of the plates = A (m2)
• separation between plates = d (m)
• dielectric permittivity of insulator = ε
(F/m)

=> capacitance d
AC ε

=

(stored charge in terms of voltage)

F(F)
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Symbol:

Units:  Farads (Coulombs/Volt)

Current-Voltage relationship:

or

Note: Q  (vc) must be a continuous function of time

Capacitor

+
vc
–

ic

dt
dCv

dt
dvC

dt
dQi c

c
c +==

C C

(typical range of values: 1 pF to 1 µF; for “supercapa-
citors” up to a few F!)

+

Electrolytic (polarized)
capacitor

C

If C (geometry) is unchanging, iC = C dvC/dt
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Voltage in Terms of Current

)0()(1)0()(1)(

)0()()(

00

0

c

t

c

t

cc

t

c

vdtti
CC

Qdtti
C

tv

QdttitQ

+=+=

+=

∫∫

∫

Uses:  Capacitors are used to store energy for camera flashbulbs,
in filters that separate various frequency signals, and
they appear as undesired “parasitic” elements in circuits where
they usually degrade circuit performance
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You might think the energy stored on a capacitor is QV = 
CV2, which has the dimension of Joules.  But during 
charging, the average voltage across the capacitor was 
only half the final value of V for a linear capacitor.

Thus, energy is .2
2
1       

2
1 CVQV =

Example: A 1 pF capacitance charged to 5 Volts 
has  ½(5V)2 (1pF) = 12.5 pJ
(A 5F supercapacitor charged to 5
volts stores 63 J; if it discharged at a
constant rate in 1 ms energy is
discharged at a 63 kW rate!)

Stored Energy
CAPACITORS STORE ELECTRIC ENERGY
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A more rigorous derivation

This derivation holds 
independent of the circuit!
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Example: Current, Power & Energy for a Capacitor

dt
dvCi =

–
+

v(t) 10 µF

i(t)

t (µs)

v (V)

0 2 3 4 51

t (µs)0 2 3 4 51

1

i (µA) vc and q must be continuous
functions of time; however,
ic can be discontinuous.

)0()(1)(
0

vdi
C

tv
t

+= ∫ ττ

Note: In “steady state”
(dc operation), time
derivatives are zero

C is an open circuit
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vip =

0 2 3 4 51

w (J)
–
+

v(t) 10 µF

i(t)

t (µs)0 2 3 4 51

p (W)

t (µs)

2

0 2
1 Cvpdw

t

∫ == τ
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Capacitors in Series

i(t)
C1

+   v1(t)  –

i(t)

+

v(t)=v1(t)+v2(t)

–
Ceq

C2

+   v2(t)  –

21

111
CCCeq

+=
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Capacitive Voltage Divider
Q: Suppose the voltage applied across a series combination 

of capacitors is changed by ∆v.  How will this affect the 
voltage across each individual capacitor?

21 vvv ∆+∆=∆

v+∆v
C1

C2

+
v2(t)+∆v2
–

+
v1+∆v1
–+

–

Note that no net charge can
can be introduced to this node.
Therefore, −∆Q1+∆Q2=0

Q1+∆Q1

-Q1−∆Q1

Q2+∆Q2

−Q2−∆Q2

∆Q1=C1∆v1

∆Q2=C2∆v2

2211  vCvC ∆=∆⇒
v

CC
Cv ∆
+

=∆
21

1
2

Note: Capacitors in series have the same incremental 
charge.
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Symbol:

Units:  Henrys (Volts • second / Ampere)

Current in terms of voltage:

Note: iL must be a continuous function of time

Inductor

+
vL
–

iL

∫ +=

=

t

t
LL

LL

tidv
L

ti

dttv
L

di

0

)()(1)(

)(1

0ττ

L

(typical range of values: µH to 10 H)
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Stored Energy

Consider an inductor having an initial current i(t0) = i0

2
0

2

2
1

2
1)(

)()(

)()()(

0

LiLitw

dptw

titvtp

t

t

−=

==

==

∫ ττ

INDUCTORS STORE MAGNETIC ENERGY



Slide 13EE100 Summer 2008 Bharathwaj Muthuswamy

Inductors in Series and Parallel

Common
Current

Common
Voltage
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Capacitor

v cannot change instantaneously
i can change instantaneously
Do not short-circuit a charged
capacitor (-> infinite current!)

n cap.’s in series:

n cap.’s in parallel:

In steady state (not time-varying), 
a capacitor behaves like an open 
circuit.

Inductor

i cannot change instantaneously
v can change instantaneously
Do not open-circuit an inductor with 
current (-> infinite voltage!)

n ind.’s in series:

n ind.’s in parallel:

In steady state, an inductor 
behaves like a short circuit.

Summary

∑

∑

=

=

=

=

n

i
ieq

n

i ieq

CC

CC

1

1

11

21;
2

dvi C w Cv
dt

= = 21;
2

div L w Li
dt

= =

∑

∑

=

=

=

=

n

i ieq

n

i
ieq

LL

LL

1

1
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First-Order Circuits
• A circuit that contains only sources, resistors 

and an inductor is called an RL circuit.
• A circuit that contains only sources, resistors 

and a capacitor is called an RC circuit.
• RL and RC circuits are called first-order circuits 

because their voltages and currents are 
described by first-order differential equations.

–
+

vs L

R

–
+

vs C

R

i i
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Response of a Circuit
• Transient response of an RL or RC circuit is

– Behavior when voltage or current source are suddenly
applied to or removed from the circuit due to switching.

– Temporary behavior
• Steady-state response (aka. forced response)

– Response that persists long after transient has decayed
• Natural response of an RL or RC circuit is 

– Behavior (i.e., current and voltage) when stored energy 
in the inductor or capacitor is released to the resistive 
part of the network (containing no independent 
sources).
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Natural Response Summary
RL Circuit

• Inductor current
cannot change 
instantaneously

• In steady state, an 
inductor behaves like 
a short circuit.

RC Circuit

• Capacitor voltage
cannot change 
instantaneously

• In steady state, a 
capacitor behaves like 
an open circuit

R

i

L

+

v

–

RC
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First Order Circuits

( ) ( ) ( )c
c s

dv tRC v t v t
dt

+ =

KVL around the loop:
vr(t) + vc(t) = vs(t) )()(1)( tidxxv

LR
tv

s

t

=+ ∫
∞−

KCL at the node:

( ) ( ) ( )L
L s

di tL i t i t
R dt

+ =

R
+

-
Cvs(t)

+
-

vc(t)

+ -vr(t)
ic(t)

vL(t)is(t) R L

+

-

iL(t)
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Procedure for Finding Transient Response

1. Identify the variable of interest
• For RL circuits, it is usually the inductor current iL(t)
• For RC circuits, it is usually the capacitor voltage vc(t)

2. Determine the initial value (at t = t0
- and t0

+) of 
the variable

• Recall that iL(t) and vc(t) are continuous variables:
iL(t0

+) = iL(t0
−) and   vc(t0

+) = vc(t0
−)

• Assuming that the circuit reached steady state before 
t0 , use the fact that an inductor behaves like a short 
circuit in steady state or that a capacitor behaves like 
an open circuit in steady state
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Procedure (cont’d)

3. Calculate the final value of the variable  
(its value as t ∞)

• Again, make use of the fact that an inductor 
behaves like a short circuit in steady state (t ∞)
or that a capacitor behaves like an open circuit in 
steady state (t ∞)

4. Calculate the time constant for the circuit
τ = L/R for an RL circuit, where R is the Thévenin

equivalent resistance “seen” by the inductor
τ = RC for an RC circuit where R is the Thévenin

equivalent resistance “seen” by the capacitor
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• Consider the following circuit, for which the switch is 
closed for t < 0, and then opened at t = 0:

Notation:
0– is used to denote the time just prior to switching
0+  is used to denote the time immediately after switching

• The voltage on the capacitor at t = 0– is Vo

Natural Response of an RC Circuit

C

Ro

RVo

t = 0
+
−

+
v
–
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Solving for the Voltage (t ≥ 0)

• For t > 0, the circuit reduces to

• Applying KCL to the RC circuit:

• Solution:

+

v

–

RCtevtv /)0()( −=

C
Ro

RVo
+
−

i
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Solving for the Current (t > 0)

• Note that the current changes abruptly:

RCt
oeVtv /)( −=

R
Vi

e
R
V

R
vtit

i

o

RCto
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==>

=
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−
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Solving for Power and Energy Delivered (t > 0)

( )RCt
o

t
RCxo

t

RCto

eCV

dxe
R

Vdxxpw

e
R

V
R
vp
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/2
22
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Natural Response of an RL Circuit
• Consider the following circuit, for which the switch is 

closed for t < 0, and then opened at t = 0:

Notation:
0– is used to denote the time just prior to switching
0+  is used to denote the time immediately after switching

• t<0 the entire system is at steady-state; and the inductor 
is like short circuit

• The current flowing in the inductor at t = 0– is Io and V 
across is 0.

LRo RIo

t = 0 i +

v

–
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Solving for the Current (t ≥ 0)
• For t > 0, the circuit reduces to

• Applying KVL to the LR circuit:
• v(t)=i(t)R
• At t=0+, i=I0, 
• At arbitrary t>0, i=i(t) and

• Solution:

( )( ) di tv t L
dt

=

LRo RIo

i +

v

–

= I0e-(R/L)ttLReiti )/()0()( −=

-
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Solving for the Voltage (t > 0)

• Note that the voltage changes abruptly:

tLR
oeIti )/()( −=

LRo RIo

+

v

–

I0Rv

ReIiRtvt
v
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Solving for Power and Energy Delivered (t > 0)
tLR

oeIti )/()( −=

LRo RIo

+

v
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( )tLR
o

t
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o

t

tLR
o

eLI

dxReIdxxpw

ReIRip

)/(22

0

)/(22

0

)/(222

1
2
1    

)(

−

−

−

−=

==

==

∫∫



Slide 29EE100 Summer 2008 Bharathwaj Muthuswamy

Natural Response Summary
RL Circuit

• Inductor current cannot 
change instantaneously

• time constant

RC Circuit

• Capacitor voltage cannot 
change instantaneously

• time constant
R
L

=τ

τ/)0()(
)0()0(
teiti

ii
−

+−

=

=

R

i

L

+

v

–

RC

τ/)0()(
)0()0(
tevtv

vv
−

+−

=

=

RC=τ
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• Every node in a real circuit has capacitance; it’s the charging 
of these capacitances that limits circuit performance (speed)

We compute with pulses. 

We send beautiful pulses in:

But we receive lousy-looking 
pulses at the output:

Capacitor charging effects are responsible!

time

vo
lta

ge

time

vo
lta

ge

Digital Signals
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Circuit Model for a Logic Gate
• Recall (from Lecture 1) that electronic building blocks 

referred to as “logic gates” are used to implement 
logical functions (NAND, NOR, NOT) in digital ICs
– Any logical function can be implemented using these gates.

• A logic gate can be modeled as a simple RC circuit:

+

Vout

–

R

Vin(t) +
− C

switches between “low” (logic 0) 
and “high” (logic 1) voltage states
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The input voltage pulse 
width must be large 
enough; otherwise the 
output pulse is distorted.
(We need to wait for the output to 
reach a recognizable logic level, 
before changing the input again.)

0
1
2
3
4
5
6

0 1 2 3 4 5
Time

Vo
ut

Pulse width = 0.1RC

0
1
2
3
4
5
6

0 1 2 3 4 5
Time

Vo
ut

0
1
2
3
4
5
6

0 5 10 15 20 25
Time

Vo
ut

Pulse Distortion

+

Vout

–

R

Vin(t) C
+

–

Pulse width = 10RCPulse width = RC
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Vin

R
Vout

C

Suppose a voltage pulse of width
5 µs and height 4 V is applied to the
input of this circuit beginning at t = 0:

R = 2.5 kΩ
C = 1 nF

• First, Vout will increase exponentially toward 4 V.
• When Vin goes back down, Vout will decrease exponentially 

back down to 0 V.

What is the peak value of Vout?

The output increases for 5 µs, or 2 time constants.
It reaches 1-e-2 or 86% of the final value.

0.86 x 4 V = 3.44 V is the peak value

Example

τ = RC = 2.5 µs
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First Order Circuits: Forced Response

( ) ( ) ( )c
c s

dv tRC v t v t
dt

+ =

KVL around the loop:
vr(t) + vc(t) = vs(t) )()(1)( tidxxv

LR
tv

s

t

=+ ∫
∞−

KCL at the node:

( ) ( ) ( )L
L s

di tL i t i t
R dt

+ =

R
+

-
Cvs(t)

+
-

vc(t)

+ -vr(t)
ic(t)

vL(t)is(t) R L

+

-

iL(t)
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Complete Solution
• Voltages and currents in a 1st order circuit satisfy a 

differential equation of the form

– f(t) is called the forcing function.
• The complete solution is the sum of particular solution

(forced response) and complementary solution (natural 
response).

– Particular solution satisfies the forcing function
– Complementary solution is used to satisfy the initial conditions. 
– The initial conditions determine the value of K.

( )( ) ( )dx tx t f t
dt

τ+ =

/

( )( ) 0

( )

c
c

t
c

dx tx t
dt

x t Ke τ

τ

−

+ =

=

( )
( ) ( )p

p

dx t
x t f t

dt
τ+ =

Homogeneous 
equation

( ) ( ) ( )p cx t x t x t= +
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The Time Constant

• The complementary solution for any 1st 
order circuit is

• For an RC circuit, τ = RC
• For an RL circuit, τ = L/R

/( ) t
cx t Ke τ−=
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What Does Xc(t) Look Like?

τ = 10-4/( ) t
cx t e τ−=

• τ is the amount of time necessary 
for an exponential to decay to 
36.7% of its initial value.

• -1/τ is the initial slope of an 
exponential with an initial value of 
1.
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The Particular Solution

• The particular solution xp(t) is usually a 
weighted sum of f(t) and its first derivative.

• If f(t) is constant, then xp(t) is constant.
• If f(t) is sinusoidal, then xp(t) is sinusoidal.
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The Particular Solution: F(t) Constant

BtAtxP +=)(

F
dt

tdxtx P
P =+

)()( τ

F
dt

BtAdBtA =
+

++
)()( τ

FBBtA =++ τ)(

0)()( =+−+ tBFBA τ

0)( =B 0)( =−+ FBA τ

FA =

Guess a solution

0=B

Equation holds for all time 
and time variations are 

independent and thus each 
time variation coefficient is 

individually zero
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The Particular Solution: F(t) Sinusoid

)cos()sin()( wtBwtAtxP +=

)cos()sin()()( wtFwtF
dt

tdxtx BA
P

P +=+τ

)cos()sin())cos()sin(())cos()sin(( wtFwtF
dt

wtBwtAdwtBwtA BA +=
+

++ τ

Guess a solution

Equation holds for all time and 
time variations are independent 

and thus each time variation 
coefficient is individually zero

( )sin( ) ( )cos( ) 0A BA B F t B A F tτω ω τω ω− − + + − =
( ) 0BB A Fτω+ − =( ) 0AA B Fτω− − =

2( ) 1
A BF FA τω
τω
+

=
+ 2( ) 1

A BF FB τω
τω

−
= −

+

2 2 2

1

2

1 1( ) sin( ) cos( )
( ) 1 ( ) 1 ( ) 1

1 cos( ); tan ( )
( ) 1

Px t t t

t where

τω ω ω
τω τω τω

ω θ θ τω
τω

−

⎡ ⎤
= +⎢ ⎥

⎢ ⎥+ + +⎣ ⎦

= − =
+
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The Particular Solution: F(t) Exp.

t
P BeAtx α−+=)(

21
)()( FeF

dt
tdxtx tP

P +=+ −ατ

21
)()( FeF

dt
BeAdBeA t

t
t +=

+
++ −

−
− α

α
α τ

21)( FeFBeBeA ttt +=−+ −−− ααα ατ

0)()( 12 =−−+− − teFBFA αατ

0)( 1 =−− FB ατ
0)( 2 =− FA

2FA =

Guess a solution

1FB +=ατ

Equation holds for all time 
and time variations are 

independent and thus each 
time variation coefficient is 

individually zero
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The Total Solution: F(t) Sinusoid

)cos()sin()( wtBwtAtxP +=

)cos()sin()()( wtFwtF
dt

tdxtx BA
P

P +=+τ

τ
t

T KewtBwtAtx −
++= )cos()sin()(

Only K is unknown and 
is determined by the 

initial condition at t =0

τ
t

C Ketx −
=)(

Example: xT(t=0) = VC(t=0)

)0()0cos()0sin()0(
0

==++=
− tVKeBAx CT

τ

)0()0( ==+= tVKBx CT BtVK C −== )0(

2( ) 1
A BF FA τω
τω
+

=
+ 2( ) 1

A BF FB τω
τω

−
= −

+
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Example

• Given vc(0-)=1, Vs=2 cos(ωt), ω=200.
• Find i(t), vc(t)=?

C

R
Vs

t = 0
+
−

+
vc
–


