Chapters 2, 4 and 5 from Reader

- OUTLINE
- Diode Current and Equation
- Some Interesting Circuit Applications
- Load Line Analysis
- Solar Cells, Detectors, Zener Diodes
- Circuit Analysis with Diodes
- Half-wave Rectifier
- Clamps and Voltage Doublers using Capacitors
- MOSFETs
- Transistor small signal amplifier circuits
- Reading
- Reader: Chapter 2, Chapter 4 and 5

I-V Characteristics

In forward bias (+ on p-side) we have almost unlimited flow (very low resistance). Qualitatively, the I-V characteristics must look like:

In reverse bias (+ on n-side) almost no current can flow. Qualitatively, the I-V

Diode Physical Behavior and Equation

Schematic Device

Qualitative I-V characteristics:

A non-ideality factor \mathbf{n} times $\mathbf{k T} / \mathbf{q}$ is often included.

The pn Junction I vs. V Equation

I-V characteristic of PN junctions

In EECS 105, 130, and other courses you will learn why the I vs. V relationship for PN junctions is of the form

$$
\mathrm{I}=\mathrm{I}_{0}\left(\mathrm{e}^{\mathrm{qV} / \mathrm{kT}}-1\right)
$$

where I_{0} is a constant proportional to junction area and depending on doping in P and N regions, $q=$ electronic charge $=1.6 \times 10^{-19}$, k is Boltzman constant, and T is absolute temperature.
$\mathrm{KT} / \mathrm{q}=0.026 \mathrm{~V}$ at $300^{\circ} \mathrm{K}$, a typical value for I_{0} is $10^{-12}-10^{-15} \mathrm{~A}$

We note that in forward bias, I increases exponentially and is in the $\mu \mathrm{A}-\mathrm{mA}$ range for voltages typically in the range of $0.6-0.8 \mathrm{~V}$. In reverse bias, the current is essentially zero.

Diode Ideal (Perfect Rectifier) Model

The equation $\mathrm{I}=\mathrm{I}_{0} \exp \left({ }^{\mathrm{qV}} / \mathrm{kT}^{-1)}\right.$
is graphed below for $\mathrm{I}_{0}=10^{-15} \mathrm{~A}$

The characteristic is described as a "rectifier" - that is, a device that permits current to pass in only one direction. (The hydraulic analog is a "check value".) Hence the symbol:

Diode Large-Signal Model (0.7 V Drop)

Improved "Large-Signal Diode" Model:

If we choose not to ignore the small forward-bias voltage drop of a diode, it is a very good approximation to regard the voltage drop in forward bias as a constant, about 0.7 V . the "Large signal model" results.

Rectifier Circuit

Peak Detector Circuit

Assume the ideal (perfect rectifier) model.

Key Point:
The capacitor charges due to one way current behavior of the diode.

pn-Junction Reverse Breakdown

- As the reverse bias voltage increases, the peak electric field in the depletion region increases. When the electric field exceeds a critical value ($E_{\text {crit }} \cong 2 \times 10^{5} \mathrm{~V} / \mathrm{cm}$), the reverse current shows a dramatic increase:

Zener Diode

A Zener diode is designed to operate in the breakdown mode.

Example:

Load Line Analysis Method

1. Graph the $I-V$ relationships for the non-linear element and for the rest of the circuit
2. The operating point of the circuit is found from the intersection of these two curves.

The I-V characteristic of all of the circuit except the non-linear element is called the load line

Solar cell: Example of simple PN junction

- What is a solar cell?
- Device that converts sunlight into electricity
- How does it work?
- In simple configuration, it is a diode made of PN junction
- Incident light is absorbed by material
- Creates electron-hole pairs that transport through the material through
- Diffusion (concentration gradient)
- Drift (due to electric field)

©n-type Silicon B)-type silicon

PN Junction Diode

Photovoltaic (Solar) Cell

$$
I_{D}=I_{S}\left(e^{q V_{\mathrm{D}} / k T}-1\right)-I_{\text {optical }}
$$

I-V characteristics of the device

- I-V characteristics of a PN junction is given by

$$
I=I_{S}\left[\exp \left(\frac{e V}{k T}\right)-1\right]-I_{L}
$$

where I_{s} is the saturation intensity depending on band gap and doping of the material and I_{L} is the photocurrent generated due to light

- Efficiency is defined as

$$
\eta=\frac{I_{m} \cdot V_{m}}{\text { Light Intensity }}=\frac{F F^{*} V_{o c}^{*} I_{s c}}{\text { Light Intensity }}
$$

FF is the Fill Factor

$V_{\text {oc }}$ - Open circuit voltage
I_{sc} - Short circuit current
$I_{m p}, V_{m p}$ - Current and voltage
at maximum power

Example 2: Photodiode

- An intrinsic region is placed between the p-type and n-type regions
- $W_{j} \cong W_{\text {i-region }}$, so that most of the electron-hole pairs are generated in the depletion region
\rightarrow faster response time
($\sim 10 \mathrm{GHz}$ operation)
operating point $\xrightarrow{\text { in the dark }} \xrightarrow{\perp} V_{D}(\mathrm{~V})$
$I_{D}(\mathrm{~A})$
with incident light

Photodetector Circuit Using Load Line

As light shines on the photodiode, carriers are generated by absorption. These excess carriers are swept by the electric field at the junction creating drift current, which is same direction as the reverse bias current and hence negative current. The current is proportional to light intensity and hence can

	I	
operating points under different light conditions.	\uparrow	As light intensity
increases.		
Why?		

- What happens when R_{th} is too large?
- Why use Vth?

Ideal Diode Model of PN Diode

Circuit symbol

I-V characteristic
$\xrightarrow{\text { reverse bias }} \begin{aligned} & \text { forward bias } \\ & \boldsymbol{V}_{\boldsymbol{D}}(\mathrm{V})\end{aligned}$

Switch model

- An ideal diode passes current only in one direction.
- An ideal diode has the following properties:
- when $\left.I_{\boldsymbol{D}}>0, V_{\boldsymbol{D}}=0\right\}$ Diode behaves like a switch:
- when $\left.\boldsymbol{V}_{\boldsymbol{D}}<0, \boldsymbol{I}_{\boldsymbol{D}}=0\right\}$. closed in forward bias mode
- open in reverse bias mode

Large-Signal Diode Model

Circuit symbol

I-V characteristic

Switch model

For a Si pn diode, $V_{D o n} \cong 0.7 \mathrm{~V}$
RULE 1: When $I_{D}>0, V_{D}=V_{\text {Don }}$ Diode behaves like a voltage
RULE 2: When $\left.\boldsymbol{V}_{\boldsymbol{D}}<\boldsymbol{V}_{\boldsymbol{D o n}}, \boldsymbol{I}_{\boldsymbol{D}}=0\right\}$ source in series with a switch: - closed in forward bias mode

- open in reverse bias mode

Diode: Large Signal Model

- Use piece-wise linear model

"Practical" diode model ideal with offset

How to Analyze Circuits with Diodes

A diode has only two states:

- forward biased: $I_{D}>0, V_{D}=0 \mathrm{~V}$ (or 0.7 V)
- reverse biased: $I_{D}=0, V_{D}<0 \mathrm{~V}$ (or 0.7 V)

Procedure:

1. Guess the state(s) of the diode(s)
2. Check to see if KCL and KVL are obeyed.
3. If KCL and KVL are not obeyed, refine your guess
4. Repeat steps 1-3 until KCL and KVL are obeyed.

Example:

If $v_{\mathrm{s}}(t)>0 \mathrm{~V}$, diode is forward biased (else KVL is disobeyed - try it)

If $v_{\mathrm{s}}(t)<0 \mathrm{~V}$, diode is reverse biased (else KVL is disobeyed - try it)

Diode Logic: AND Gate

- Diodes can be used to perform logic functions:

AND gate
output voltage is high only if both A and B are high

Inputs A and B vary between 0 Volts ("low") and $V_{c c}$ ("high") Between what voltage levels does C vary?

Diode Logic: OR Gate

- Diodes can be used to perform logic functions:

OR gate
output voltage is high if

Inputs A and B vary between 0 Volts ("low") and $V_{c c}$ ("high") Between what voltage levels does C vary?

either (or both) A and B are high

Diode Logic: Incompatibility and Decay

- Diode Only Gates are Basically Incompatible:

AND gate
output voltage is high only if both A and B are high

OR gate
output voltage is high if either (or both) A and B are high

Signal Decays with each stage (Not regenerative)

Device Isolation using pn Junctions

No current flows if voltages are applied between n-type regions, because two pn junctions are "back-to-back"

=> n-type regions isolated in p-type substrate and vice versa

Why are pn Junctions Important for ICs?

- The basic building block in digital ICs is the MOS transistor, whose structure contains reverse-biased diodes.
- pn junctions are important for electrical isolation of transistors located next to each other at the surface of a Si wafer.
- The junction capacitance of these diodes can limit the performance (operating speed) of digital circuits

Power Conversion Circuits

- Converting AC to DC
- Potential applications: Charging a battery

Rectifier Equivalent circuit

Half-wave Rectifier Circuits

- Adding a capacitor: what does it do?

Half-Wave Rectifier

Level Shift Circuit

Once the capacitor is charged by the negative most voltage the rest of the signal is shifted up by that amount.

Voltage Doubler Circuit

The final output is the peak to peak voltage of the input.

MOSFETs: Detailed outline

- OUTLINE
- The MOSFET as a controlled resistor
- Pinch-off and current saturation
- MOSFET ID vs. VGS characteristic
- NMOS and PMOS I-V characteristics
- Load-line analysis; Q operating point; Bias circuits
- Small-signal equivalent circuits
- Common source amplifier
- Source follower
- Common gate amplifier
- Gain
- Reading
- Reader: Chapters 4 and 5

MOSFET Terminals

- The voltage applied to the GATE terminal determines whether current can flow between the SOURCE \& DRAIN terminals.
- For an n-channel MOSFET, the SOURCE is biased at a lower potential (often 0 V) than the DRAIN
(Electrons flow from SOURCE to DRAIN when $V_{G}>V_{T}$)
- For a p-channel MOSFET, the SOURCE is biased at a higher potential (often the supply voltage $V_{D D}$) than the DRAIN (Holes flow from SOURCE to DRAIN when $V_{G}<V_{T}$)
- The BODY terminal is usually connected to a fixed potential.
- For an n-channel MOSFET, the BODY is connected to 0 V
- For a p-channel MOSFET, the BODY is connected to $V_{D D}$

MOSFET Structure

- In the absence of gate voltage, no current can flow between S and D.
- Above a certain gate to source voltage V_{t} (the "threshold"), electrons are induced at the surface beneath the oxide. (Think of it as a capacitor.)
- These electrons can carry current between S and D if a voltage is applied.

MOSFET

- Symbol and subscript convention
- Upper case for both (e.g. V_{D}) = DC signal (often as bias)
- Lower case for both (e.g. v_{d}) = AC signal (often small signal)
- Lower symbol and upper sub (e.g. v_{D}) $=$ total signal $=\mathrm{V}_{\mathrm{D}}+\mathrm{v}_{\mathrm{d}}$
- NMOS: Three regions of operation
- $V_{D S}$ and $V_{G S}$ normally positive valus
$-V_{G S}<V_{t}$:cut off mode, $I_{D S}=0$ for any $V_{D S}$
$-V_{G S}>V_{t}$:transistor is turned on
- $\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}$: Triode Region $\quad i_{D}=K\left[2\left(v_{G S}-V_{t}\right) v_{D S}-v_{D S}{ }^{2}\right]$
- $\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}$: Saturation Region $i_{D}=K\left[2\left(v_{G S}-V_{t}\right)^{2}\right]$
- Boundary $v_{G S}-V_{t}=v_{D S}$

$$
K=\frac{W}{L} \frac{K P}{2}
$$

MOSFET

- PMOS: Three regions of operation (interchange > and < from NMOS)
$-V_{D S}$ and $V_{G S}$ Normally negative values
$-\mathrm{V}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{t}}$:cut off mode, $\mathrm{I}_{\mathrm{DS}}=0$ for any V_{DS}
$-V_{G S}<V_{t}$: transistor is turned on
- $\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{G S}-\mathrm{V}_{\mathrm{t}}$: Triode Region $\quad i_{D}=K\left[2\left(v_{G S}-V_{t}\right) v_{D S}-v_{D S}{ }^{2}\right]$
- $\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}$: Saturation Region $i_{D}=K\left[2\left(V_{G S}-V_{t}\right)^{2}\right]$
- Boundary $V_{G S}-V_{t}=v_{D S}$

$$
K=\frac{W}{L} \frac{K P}{2}
$$

MOSFET Operating Regions

NMOS

PMOS

Bias Circuits

- Use load line to find Quiescent operating point.
- Remember no current flow through the gate.

MOSFET Circuit

- First look at DC case to find Q point
- Use load line technique
- All capacitors are open circuit
- From Q-point, get g_{m} and r_{d} for small signal AC model
- AC Small signal analysis
- DC source is AC ground (because there is no AC signal variation).
- All capacitors are short circuit (unless otherwise specified).

Common Source Amplifier

Step 1: find Q point

Load line

$$
\begin{gathered}
I_{D}=\frac{V_{D D}-V_{D S}}{R_{D}+R_{S}} \\
I_{D}=\frac{V_{G}-V_{G S}}{R_{S}} \\
\# \\
\theta_{m} .
\end{gathered}
$$

From load lines, we get $\mathrm{I}_{\mathrm{D}} \rightarrow$ and hence g_{m} and r_{d}

Small Signal Model

For output impedance $\mathrm{R}_{\text {out }}$:
$v_{g}=v_{i n}, v_{s}=0 \rightarrow v_{g s}=v_{i n}$ 1. Turn off all independent sources.
2. Take away load impedance R_{L}

$$
\begin{aligned}
& v_{\text {in }}=0, v_{g s}=0, g_{m} v_{g s}=0 \\
& R_{\text {out }}=\frac{r_{d} R_{D}}{r_{d}+R_{D}}
\end{aligned}
$$

Source Follower

Step 1: find Q point

Load line

$$
I_{d}+
$$

$$
I_{D}=\frac{V_{G}-V_{G S}}{R_{S}}
$$

From load lines, we get $\mathrm{I}_{\mathrm{D}} \rightarrow$ and hence g_{m} and r_{d}

Small Signal Model

Common Gate Amplifier

Step 1: find Q point

$$
\begin{aligned}
& V_{G S}=0-I_{D} R_{S}+V_{S S} \\
& V_{D D}+V_{S S}=I_{D}\left(R_{D}+R_{S}\right)+V_{D S}
\end{aligned}
$$

Load line

The only difference in all three circuits are the intercepts at the axes. Again from load lines, we get $\mathrm{I}_{\mathrm{D}} \rightarrow$ and hence g_{m} and r_{d}

Small Signal Model

$$
\begin{aligned}
& R_{L}^{\prime}=\frac{1}{R_{L}^{-1}+R_{D}^{-1}} \\
& v_{g s}=-v_{\text {in }} \\
& v_{o}=-g_{m} v_{g s} R_{L}^{\prime} \\
& A_{v}=\frac{v_{o}}{v_{i n}}=g_{m} R_{L}^{\prime} \\
& i_{\text {in }}=-\left(g_{m} v_{g s}+\frac{v_{g s}}{R_{s}}\right) \\
& R_{\text {in }}=\frac{v_{\text {in }}}{i_{\text {in }}}=\frac{1}{g_{m}+R_{s}^{-1}}
\end{aligned}
$$

For output impedance $R_{\text {out }}$:

1. Turn off all independent sources.
2. Take away R_{L}
3. Add V_{x} and find i_{x}

$$
\begin{aligned}
& R^{\prime}=\frac{R R_{s}}{R+R_{s}} \\
& i_{x}=\frac{v_{x}}{R_{D}}+g_{m} v_{g s} \\
& v_{g s}=-g_{m} v_{g s} R^{\prime}, \text { but } g_{m} R^{\prime} \neq 1 \therefore v_{g s}=0 \\
& R_{\text {out }}=R_{D}
\end{aligned}
$$

MOSFET Digital Circuits - Introduction

- Analog: signal amplitude is continuous with time.
- Digital: signal amplitude is represented by a restricted set of discrete numbers.
- Binary: only two values are allowed to represent the signal: High or low (i.e. logic 1 or 0).
- Digital word:
- Each binary digit is called a bit
- A series of bits form a word
- Byte is a word consisting of 8-bits
- Advantages of digital signal
- Digital signal is more resilient to noise \rightarrow can more easily differentiate high (1) and low (0)
- Transmission
- Parallel transmission over a bus containing n wires.
- Faster but short distance (internal to a computer or chip)
- Serial transmission (transmit bits sequentially)
- Longer distance

Analog vs. Digital Signals

- Most (but not all) observables are analog think of analog vs. digital watches
but the most convenient way to represent \& transmit information electronically is to use digital signals think of telephony
\rightarrow Analog-to-digital (A/D) \& digital-to-analog (D/A)
conversion is essential (and nothing new)
think of a piano keyboard

Analog Signal Example: Microphone Voltage

Digital Signal Representations

Binary numbers can be used to represent any quantity.

We generally have to agree on some sort of "code", and the dynamic range of the signal in order to know the form and the number of binary digits ("bits") required.

Example 1: Voltage signal with maximum value 2 Volts

- Binary two (10) could represent a 2 Volt signal.
- To encode the signal to an accuracy of 1 part in 64 (1.5\% precision), 6 binary digits ("bits") are needed

Example 2: Sine wave signal of known frequency and maximum amplitude $50 \mu \mathrm{~V} ; 1 \mu \mathrm{~V}$ "resolution" needed.

Decimal Numbers: Base 10

Digits: $0,1,2,3,4,5,6,7,8,9$

Example:

$3271=\left(3 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(7 \times 10^{1}\right)+\left(1 \times 10^{0}\right)$
This is a four-digit number. The left hand most number (3 in this example) is often referred as the most significant number and the right most the least significant number (1 in this example).

Numbers: positional notation

- Number Base $B \Rightarrow B$ symbols per digit:
-Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
-Base 2 (Binary): 0,1
- Number representation:
$-d_{31} d_{30} \ldots d_{1} d_{0}$ is a 32 digit number
-value $=d_{31} \times B^{31}+d_{30} \times B^{30}+\ldots+d_{1} \times B^{1}+d_{0} \times B^{0}$
- Binary: 0,1 (In binary digits called "bits")
$11010=1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$
$=16+8+2$
$=26$
-Here 5 digit binary \# turns into a 2 digit decimal \#

Hexadecimal Numbers: Base 16

- Hexadecimal:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F - Normal digits +6 more from the alphabet
-Conversion: Binary \Leftrightarrow Hex
-1 hex digit represents 16 decimal values
-4 binary digits represent 16 decimal values
$\Rightarrow 1$ hex digit replaces 4 binary digits

Digital Signal Representations

Binary numbers can be used to represent any quantity.

We generally have to agree on some sort of "code", and the dynamic range of the signal in order to know the form and the number of binary digits ("bits") required.

Example 1: Voltage signal with maximum value 2 V and minimum of 0 V .

- Binary two (10) could represent a 2 Volt signal.
- To encode the signal to an accuracy of 1 part in 64 (1.5\% precision), 6 binary digits ("bits") are needed

Example 2: Sine wave signal of known frequency and maximum amplitude $50 \mu \mathrm{~V} ; 1 \mu \mathrm{~V}$ "resolution" needed.

Resolution

- The size of the smallest element that can be separated from neighboring elements. The term is used to describe imaging systems, the frequency separation achieved by spectrometers, and so on.

Decimal-Binary Conversion

- Decimal to Binary
- Repeated Division By 2
- Consider the number 2671.
- Subtraction - if you know your 2^{N} values by heart.
- Binary to Decimal conversion $110001_{2}=1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$

$$
\begin{aligned}
& =32_{10}+16_{10}+1_{10} \\
& =49_{10} \\
& =4 \times 10^{1}+9 \times 10^{0}
\end{aligned}
$$

Example 2 (continued)

Possible digital representation for the sine wave signal:

Analog representation:	Digital representation:
Amplitude in $\mu \mathrm{V}$	Binary number
1	000001
2	000010
3	000011
4	000100
5	000101
8	001000
16	010000
32	100000
50	110010
63	111111

Binary Representation

- N bit can represent 2^{N} values: typically from 0 to $2^{\mathrm{N}}-1$
- 3-bit word can represent 8 values: e.g. 0, 1, 2, 3, 4, 5, 6, 7
- Conversion
- Integer to binary
- Fraction to binary $\left(13.5_{10}=1101.1_{2}\right.$ and $0.392_{10}=0.011001_{2}$)
- Octal and hexadecimal
- Logic gates
- Combine several logic variable inputs to produce a logic variable output
- Memory
- Memoryless: output at a given instant depends the input values of that instant.
- Momory: output depends on previous and present input values.

Boolean algebras

- Algebraic structures
- "capture the essence" of the logical operations AND, OR and NOT
- corresponding set for theoretic operations intersection, union and complement
- named after George Boole, an English mathematician at University College Cork, who first defined them as part of a system of logic in the mid 19th century.
- Boolean algebra was an attempt to use algebraic techniques to deal with expressions in the propositional calculus.
- Today, Boolean algebras find many applications in electronic design. They were first applied to switching by Claude Shannon in the 20th century.

Boolean algebras

- The operators of Boolean algebra may be represented in various ways. Often they are simply written as AND, OR and NOT.
- In describing circuits, NAND (NOT AND), NOR (NOT OR) and XOR (eXclusive OR) may also be used.
- Mathematicians often use + for OR and • for AND (since in some ways those operations are analogous to addition and multiplication in other algebraic structures) and represent NOT by a line drawn above the expression being negated.

Boolean Algebra

- NOT operation (inverter)

$$
A \cdot \bar{A}=0
$$

- AND operation

$$
\begin{aligned}
& A \cdot A=A \\
& A \cdot 1=A \\
& A \cdot 0=0 \\
& A \cdot B=B \cdot A
\end{aligned}
$$

- OR operation

$$
\begin{aligned}
& (A \cdot B) \cdot C=A \cdot(B \cdot C) \\
& A+A=A \\
& A+1=1 \\
& A+0=A \\
& A+B=B+A \\
& (A+B)+C=A+(B+C)
\end{aligned}
$$

Graphic Representation

$$
\begin{aligned}
& A \cdot \bar{A}=0 \\
& A+\bar{A}=1
\end{aligned}
$$

Full square = complete set =1
Yellow part $=\operatorname{NOT}(\mathrm{A})=\overline{\mathrm{A}}$
White circle $=\mathrm{A}$

Graphic Representation

$A \oplus B=A \bar{B}+\bar{A} B=(A+B) \cdot(\bar{A}+\bar{B})=\overline{A \cdot B+\overline{A+B}}$ Exclusive OR=yellow and blue part intersection/overlap part
=exactly when only one of the input is true

Boolean Algebra

- Distributive Property

$$
\begin{aligned}
& A \cdot(B+C)=A \cdot B+A \cdot C \\
& (A+B) \cdot C=(A+B) \cdot(A+C)
\end{aligned}
$$

- De Morgan's laws

$$
\begin{aligned}
& \overline{A+B}=\bar{A} \cdot \bar{B} \\
& \overline{A \cdot B}=\bar{A}+\bar{B}
\end{aligned}
$$

- An excellent web site to visit
- http://en.wikipedia.org/wiki/Boolean_algebra

Examples

$$
F=A \cdot \bar{B} \cdot C+A \cdot B \cdot C+(C+D) \cdot(\bar{D}+E)
$$

$F=C \cdot(A+\bar{D}+E)+D \cdot E$

Logic Functions, Symbols, \& Notation

NAME
"NOT"
SYMBOL

NOTATION
$F=\bar{A}$
TRUTH
TABLE

$F=A \cdot B$

A	B	F
$\mathbf{0}$	$\mathbf{0}$	0
0	1	0
1	0	0
1	1	1

Logic Functions, Symbols, \& Notation 2

"NOR"

$F=\overline{A+B}$

A	B	F
0	0	1
0	1	0
1	0	0
1	1	0

"NAND"

$F=\overline{A \cdot B}$

A	B	F
0	0	1
0	1	1
1	0	1
1	1	0

"XOR"
(exclusive OR)

$F=A \oplus B$

A	B	F
0	0	0
0	1	1
1	0	1
1	1	0

Circuit Realization

$$
A \oplus B=A \bar{B}+\bar{A} B=(A+B) \cdot(\bar{A}+\bar{B})=\overline{A \cdot B+\overline{A+B}}
$$

Logic Functions, Symbols, \& Notation

NAME
"NOT"
SYMBOL

NOTATION
$F=\bar{A}$
TRUTH
TABLE

$F=A \cdot B$

A	B	F
$\mathbf{0}$	$\mathbf{0}$	0
0	1	0
1	0	0
1	1	1

Logic Functions, Symbols, \& Notation 2

"NOR"

$F=\overline{A+B}$

A	B	F
0	0	1
0	1	0
1	0	0
1	1	0

"NAND"

$F=\overline{A \cdot B}$

A	B	F
0	0	1
0	1	1
1	0	1
1	1	0

"XOR"
(exclusive OR)

$F=A \oplus B$

A	B	F
0	0	0
0	1	1
1	0	1
1	1	0

Fan in/Fan out

- Complex digital operations are formed with a variety of gates interconnected to yield the desired logic function.
- Sometimes a number of inputs are connected to one gate input and output of a gate may be connected to a number of gates.
- Fan-in: the maximum number of logic gates that can be connected at the input of a gate without altering its performance.
- Fan-out: the maximum number of logic gates that can be connected to the output of a gate without altering its performance.
- Typical fan-in and fan-out numbers are 3.

Inverter = NOT Gate

Ideal Transfer Characteristics

Terminology for a Logic Circuit

$V_{D D}=$ Power supply voltage (D is from
Drain) we do not draw the symbol.
Pulll-Up Network = Set of devices used to
carry current from the power supply to
the output node to charge the output
node to the power supply voltage.
Pull-Down Network = Set of devices used to
carry current from the output node to ground to
discharge the output node to ground.
$\mathrm{V}_{\mathrm{TD}}=$ Threshold Voltage value of V_{IN} at which the
Pull-Down (NMOS transistor) begins to conduct.
$\mathbf{V}_{\text {OUt-SAt-d }}=$ Value of $\mathbf{V}_{\text {OUT }}$ beyond which the current $I_{\text {OUt-D }}$
saturates at the (drain) current saturation value $\mathrm{I}_{\text {OUt-SAt-d }}$.

Thevenin Model For Pull-Up Device

Load Line For Pull-Up Device

$I_{\text {OUT }}$ Vs. $V_{\text {OUT }}$
For the Pull-Up Resistor and $V_{D D}$

(

NMOS Resistor Pull-Up

Disadvantages of NMOS Logic Gates

- Large values of \boldsymbol{R}_{D} are required in order to
- achieve a low value of $V_{O L}$
- keep power consumption low
\rightarrow Large resistors are needed, but these take up a lot of space.
- One solution is to replace the resistor with an NMOSFET that is always on.

The CMOS Inverter: Intuitive Perspective

CMOS Inverter Voltage Transfer Characteristic

CMOS Inverter Load-Line Analysis

CMOS Inverter Load-Line Analysis: Region A

$$
V_{I N} \leq V_{T n}
$$

CMOS Inverter Load-Line Analysis: Region B

$$
V_{D D} / 2>V_{I N}>V_{T n}
$$

$$
I_{D n}=-I_{D p}
$$

CMOS Inverter Load-Line Analysis: Region D

$$
V_{D D}-\left|V_{T_{P} \mid}\right|>V_{I N}>V_{D D} / 2
$$

$$
I_{D n}=-I_{D p}
$$

CMOS Inverter Load-Line Analysis: Region E

$$
V_{I N}>V_{D D}-\left|V_{T_{p}}\right|
$$

$\xrightarrow[V_{D D}]{\longrightarrow} V_{\text {OUT }}=V_{D S n}$

Features of CMOS Digital Circuits

- The output is always connected to $V_{D D}$ or GND in steady state
\rightarrow Full logic swing; large noise margins
\rightarrow Logic levels are not dependent upon the relative sizes of the devices ("ratioless")
- There is no direct path between $V_{D D}$ and GND in steady state
\rightarrow no static power dissipation

The CMOS Inverter: Current Flow during Switching

Power Dissipation due to Direct-Path Current

Energy consumed per switching period: $E_{d p}=t_{s c} V_{D D} I_{\text {peak }}$

NMOS NAND Gate

- Output is low only if both inputs are high

Truth Table			
A	B	F	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

NMOS NOR Gate

- Output is low if either input is high

Truth Table			
A	B	F	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

N-Channel MOSFET Operation

An NMOSFET is a closed switch when the input is high

NMOSFETs pass a "strong" 0 but a "weak" 1

P-Channel MOSFET Operation

A PMOSFET is a closed switch when the input is low

PMOSFETs pass a "strong" 1 but a "weak" 0

Pull-Down and Pull-Up Devices

- In CMOS logic gates, NMOSFETs are used to connect the output to GND, whereas PMOSFETs are used to connect the output to $V_{D D}$.
- An NMOSFET functions as a pull-down device when it is turned on (gate voltage $=V_{D D}$)
- A PMOSFET functions as a pull-up device when it is turned on (gate voltage = GND)

CMOS NAND Gate

CMOS NOR Gate

CMOS Pass Gate

