EE100Su08 Lecture \#1 (June 23rd 2008)

- Outline
- Electrical quantities
- Charge, Current, Voltage, Power
- The ideal basic circuit element
- Sign conventions
- Circuit element I-V characteristics
- Construction of a circuit model
- Kirchhoff's Current Law
- Kirchhoff's Voltage Law

Electric Charge

- Electrical effects are due to
- separation of charge \rightarrow electric force (voltage)
- charges in motion \rightarrow electric flow (current)
- Macroscopically, most matter is electrically neutral most of the time.
- Exceptions: clouds in a thunderstorm, people on carpets in dry weather, plates of a charged capacitor, etc.
- Microscopically, matter is full of electric charges
- Electric charge exists in discrete quantities, integral multiples of the electronic charge -1.6×10^{-19} Coulomb

Electric Current

Electric Current Examples

1. 10^{5} positively charged particles (each with charge $1.6 \times 10^{-19} \mathrm{C}$) flow to the right ($+x$ direction) every nanosecond

$$
\begin{aligned}
& I=\frac{Q}{t}=+\frac{10^{5} \times 1.6 \times 10^{-19}}{10^{-9}}=1.6 \times 10^{-5} \mathrm{~A} \\
& 2 . \frac{11.6 \times 10^{-5} \times 10}{10}=16 \times 10^{-6} \\
& \text { 2. } 10^{5} \text { electrons flow to the right (}+x \text { direction) every }=16 \mathrm{uA}
\end{aligned}
$$ nanosecond

$$
I=\frac{Q}{t}=-\frac{10^{5} \times 1.6 \times 10^{-19}}{10^{-9}}=-1.6 \times 10^{-5} \mathrm{~A}
$$

Electric Potential (Voltage)

- Definition: energy per unit charge
- Symbol: v
- Units: Joules/Coulomb \equiv Volts (V)

$$
v=d w / d q
$$

Alessandro Volta (1745-1827)
where $w=$ energy (in Joules), $q=$ charge (in Coulombs)
Note: Potential is always referenced to some point.

Subscript convention:
$\boldsymbol{v}_{a b}$ means the potential at \boldsymbol{a} minus the potential at \boldsymbol{b}.

$$
v_{a b} \equiv v_{a}-v_{b}
$$

Electric Power

- Definition: transfer of energy per unit time
- Symbol: p
- Units: Joules per second \equiv Watts (W)

$$
p=d w / d t=(d w / d q)(d q / d t)=v i
$$

- Concept:

As a positive charge q moves through a James Watt drop in voltage v, it loses energy

- energy change = qv
- rate is proportional to \# charges/sec

The Ideal Basic Circuit Element

- Polarity reference for voltage can be indicated by plus and minus signs
- Reference direction for the current 。 is indicated by an arrow

Attributes:

- Two terminals (points of connection)

- Mathematically described in terms of current and/or voltage
- Cannot be subdivided into other elements

A note on sign conventions
ex.

($\theta \cdot$) What if iso?
(Ai) From the $i-v$ relationship "pictsse", we see that the device is absorbing power.
(Q:) What if $i<0$? \Rightarrow

A Note about Reference Directions

- A problem like "Find the current" or "Find the voltage" is always accompanied by a definition of the direction:

- In this case, if the current turns out to be 1 mA flowing to the left, we would say $i=-1 \mathrm{~mA}$.
- In order to perform circuit analysis to determine the voltages and currents in an electric circuit, you need to specify reference directions.
- There is no need to guess the reference direction so that the answers come out positive.

Sign Convention Example

Suppose you have an unlabelled battery and you measure its voltage with a digital voltmeter (DVM). It will tell you the magnitude and sign of the voltage.

With this circuit, you are measuring v_{ab}.
The DVM indicates -1.401 , so v_{a} is lower than v_{b} by 1.401 V .

Which is the positive battery terminal?

Note that we have used the "ground" symbol (∇) for the reference node on the DVM. Often it is labeled " C " for "common."

Another Example

$$
\begin{aligned}
& \text { Find } v_{\mathrm{ab}}, v_{\mathrm{ca}}, v_{\mathrm{cb}}-{ }^{\mathrm{a}}+{ }^{+2 \mathrm{~V}}{ }^{-{ }_{+}^{\mathrm{c}}}{ }^{+} \quad v_{c_{b}} \triangleq v_{c^{-}} v_{b} . \\
& + \\
& V_{a b}=-1 V \Leftrightarrow V_{b a}=1 V \\
& V_{c a}=-2 V \Leftrightarrow V_{a c}=2 Y \\
& v_{c b}=-3 v
\end{aligned}
$$

T
we 'actually use $K V_{L}$ (Kirchoff's voltage law] to find $v_{c b}$ Note that the labeling convention has nothing to do with whether or not v is positive or negative.

