EE100 Su08 Lecture #2 (June 25th 2008)

- For today:
 - Bart: slight change in office hours:
 - Check website
 - Student accounts
 - Handed out in class. If you are in EE100, pick up account from TA in lab. If you are in EE42, pick up account forms in my office hours.
 - Remote access
 - Reading for this week and next: Chapters 1, 2, 3 (except 3.7) and 4
 - Questions and/or comments on previous material?
 - New material: wrap up chapters 1 and 2
 - MultiSim demo

- If p > 0, power is being delivered to the box.
- If p < 0, power is being extracted from the box.

Power

If an element is absorbing power (*i.e.* if p > 0), positive charge is flowing from higher potential to lower potential.

p = vi if the "passive sign convention" is used:

How can a circuit element absorb power?

By converting electrical energy into heat (resistors in toasters), light (light bulbs), or acoustic energy (speakers); by storing energy (charging a battery).

Power Calculation Example

Find the power absorbed by each element:

lower calculations P = -2i= -(18)(51) - 918 W 1 51A power aposiated with device 18 V 0 . Power absorbed by device "a" is -918 W **EE100 Summer 2008** Slide 5 Bharathwaj Muthuswamy

Circuit Elements

- 5 ideal basic circuit elements:
 - voltage source
 - current source
- active elements, capable of generating electric energy

- resistor
- inductor
- capacitor

passive elements, incapable of generating electric energy

- Many practical systems can be modeled with just sources and resistors
- The basic analytical techniques for solving circuits with inductors and capacitors are similar to those for resistive circuits

Electrical Sources

 An *electrical source* is a device that is capable of converting non-electric energy to electric energy and *vice versa*.

Examples:

- battery: chemical + electric
- dynamo (generator/motor): mechanical + electric
 (Ex. gasoline-powered generator, Bonneville dam)

 \rightarrow Electrical sources can either deliver or absorb power

Ideal Voltage Source

- Circuit element that maintains a prescribed voltage across its terminals, regardless of the current flowing in those terminals.
 - Voltage is known, but current is determined by the circuit to which the source is connected.
- The voltage can be either independent or dependent on a voltage or current elsewhere in the circuit, and can be constant or time-varying.
 <u>Device symbols</u>:

Ideal Current Source

- Circuit element that maintains a prescribed current through its terminals, regardless of the voltage across those terminals.
 - Current is known, but voltage is determined by the circuit to which the source is connected.
- The current can be either independent or dependent on a voltage or current elsewhere in the circuit, and can be constant or time-varying.
 <u>Device symbols</u>:

Electrical Resistance

 Resistance: the ratio of voltage drop and current. The circuit element used to model this behavior is the *resistor*.

Circuit symbol:

v = i R (Ohm's Law)

<u>Units</u>: Volts per Ampere \equiv ohms (Ω)

• The current flowing in the resistor is proportional to the voltage across the resistor:

Georg Simon Ohm 1789-1854

where v = voltage(V), i = current(A), and $R = \text{resistance}(\Omega)$ $N \circ t_i = \frac{1}{2}R = \frac{v^2}{R}$

convention

EE100 Summer 2008

Electrical Conductance

• **Conductance** is the reciprocal of resistance.

Symbol: G

<u>Units</u>: siemens (S) or mhos (℧)

Example:

Consider an 8 Ω resistor. What is its conductance?

Werner von Siemens 1816-1892

EE100 Summer 2008

Slide 11

Bharathwaj Muthuswamy

Short Circuit and Open Circuit

- Short circuit
 - $-R = 0 \rightarrow$ no voltage difference exists
 - all points on the wire are at the same potential.
 - Current can flow, as determined by the circuit
- Open circuit
 - $-R = \infty \rightarrow$ no current flows
 - Voltage difference can exist, as determined by the circuit

Symbol

Example: Power Absorbed by a Resistor

$$p = vi = (iR)i = i^2R$$

$$p = vi = v (v/R) = v^2/R$$

Note that p > 0 always, for a resistor \rightarrow a resistor

dissipates electric energy

Example:

- a) Calculate the voltage v_a and current i_a .
- b) Determine the power dissipated in the 80Ω resistor.

Summary

- **Current** = rate of charge flow i = dq/dt
- Voltage = energy per unit charge created by charge separation
- *Power* = energy per unit time
- Ideal Basic Circuit Elements
 - two-terminal component that cannot be sub-divided
 - described mathematically in terms of its terminal voltage and current
 - An *ideal voltage source* maintains a prescribed voltage regardless of the current in the device.
 - An *ideal current source* maintains a prescribed current regardless of the voltage across the device.
 - A *resistor* constrains its voltage and current to be proportional to each other: v = iR (Ohm's law)

Summary (cont'd)

- Passive sign convention
 - For a passive device, the reference direction for current through the element is in the direction of the reference voltage drop across the element

Current vs. Voltage (I-V) Characteristic

 Voltage sources, current sources, and resistors can be described by plotting the current (*i*) as a function of the voltage (*v*)

Passive? Active?

I-V Characteristic of Ideal Voltage Source

1. Plot the *I-V* characteristic for $v_s > 0$. For what values of *i* does the source absorb power? For what values of *i* does the source release power?

 $V_s > 0 \rightarrow i < 0$ release power; i>0 absorb power

I-V Characteristic of Ideal Voltage Source

2. Plot the *I-V* characteristic for $v_s < 0$. For what values of *i* does the source absorb power? For what values of *i* does the source release power?

 $V_s < 0 \rightarrow i > 0$ release power; i<0 absorb power

I-V Characteristic of Ideal Voltage Source

I-V Characteristic of Ideal Current Source

1. Plot the *I-V* characteristic for $i_s > 0$. For what values of *v* does the source absorb power? For what values of *v* does the source release power?

V>0 absorb power; V<0 release power

Short Circuit and Open Circuit

Wire ("short circuit"):

- *R* = 0 → no voltage difference exists
 (all points on the wire are at the same potential)
- Current can flow, as determined by the circuit

<u>Air</u> ("open circuit"):

- $R \neq \infty$ \rightarrow no current flows
- Voltage difference can exist, as determined by the circuit

I-V Characteristic of Ideal Resistor

Construction of a Circuit Model

- The electrical behavior of each physical component is of primary interest.
- We need to account for undesired as well as desired electrical effects.
- Simplifying assumptions should be made wherever reasonable.

Terminology: Nodes and Branches

Node: A point where two or more circuit elements are connected

Branch: A path that connects two nodes

Circuit Nodes and Loops

- A *node* is a point where two or more circuit elements are connected.
- A *loop* is formed by tracing a closed path in a circuit through selected basic circuit elements without passing through any intermediate node more than once.

Kirchhoff's Laws

- Kirchhoff's Current Law (KCL):
 - The algebraic sum of all the currents entering any node in a circuit equals zero.
- Kirchhoff's Voltage Law (KVL):
 - The algebraic sum of all the voltages around any loop in a circuit equals zero.

Notation: Node and Branch Voltages

- Use one node as the reference (the "common" or "ground" node) – label it with a symbol
- The voltage drop from node x to the reference node is called the node voltage v_x.
- The voltage across a circuit element is defined as the difference between the node voltages at its terminals

Concrete example $V_1 = (1) (1k)$ Ohm's lew? 11L $V_{2} = (i)(2k)$ 124 $12 = 1, \pm 12$ -(i)(1k)+(i)(2k) $V_{1} = (1k)(i) = 4V$ =) 12 = (i)(3k)V == (2K) (i)= 8V 7) $i = \frac{12}{3ic} = 4 \times 10^{-3} \text{ A}$ 3ic = 4 mA

 Use reference directions to determine whether currents are "entering" or "leaving" the node – with no concern about actual current directions

Formulations of Kirchhoff's Current Law

(Charge stored in node is zero.)

Formulation 1:

Sum of currents entering node

= sum of currents leaving node

7+3=10

Formulation 2:

Algebraic sum of currents entering node = 0

• Currents leaving are included with a minus sign. 7+3-12=2

Formulation 3:

Algebraic sum of currents leaving node = 0 10 - 7 - 3 = 0

Currents entering are included with a minus sign.

A Major Implication of KCL

- KCL tells us that all of the elements in a single branch carry the same current.
- We say these elements are connected in series.

KCL Example

Bharathwaj Muthuswamy