EE100 Su08 Lecture #3 (June 27th 2008)

- Administrivia
 - Videos for lectures 1 and 2 are up (WMV format). Quality is pretty good ☺.
- For today:
 - Questions?
 - Wrap up chapter 2.
 - Start chapter 3. Refer to pdf slides for week2.
 - An outline of Labs #1 and #2.

Generalization of KCL

 The sum of currents entering/leaving a closed surface is zero. Circuit branches can be inside this surface, *i.e.* the surface can enclose more than one node!

Generalized KCL Examples

Using Kirchhoff's Voltage Law (KVL)

Consider a branch which forms part of a loop. One possibility for sign convention:

- Use **reference polarities** to determine whether a voltage is dropped
- No concern about actual voltage polarities

Formulations of Kirchhoff's Voltage Law

(Conservation of energy) 👳

Formulation 1:

Sum of voltage drops around loop = sum of voltage rises around loop $|| = V_1 + V_2$

Formulation 2: $-V_2 - V_1 + N = 0$

Algebraic sum of voltage drops around loop = 0

• Voltage rises are included with a minus sign.

(Handy trick: Look at the first sign you encounter on each element when tracing the loop.)

Formulation 3: $\sqrt{1+\sqrt{2}}$

Algebraic sum of voltage rises around loop = 0

• Voltage drops are included with a minus sign.

A Major Implication of KVL

- KVL tells us that any set of elements which are connected at both ends carry the same voltage.
- We say these elements are connected in parallel.

KVL Example

Three closed paths:

I-V Characteristic of Elements

More Examples

Are these interconnections permissible?

$$\mathbf{F}$$

$$P_{1} + P_{2} + P_{3} + P_{4} + P_{5} = 0$$

$$\Rightarrow P_{1} + P_{2} + P_{3} + P_{4} + P_{5} = 0$$

$$\Rightarrow 25v_{1} - 20v_{1} - 5v_{2} + 500 - 300 = 0$$

$$\Rightarrow 5v_{1} - 5v_{2} + 200 = 0$$

$$\Rightarrow 5v_{2} - 5v_{1} = 200$$

$$\Rightarrow 2v_{2} - v_{1} = 10$$

$$Bharathwai Muthuswam$$

Summary

- An electrical system can be modeled by an electric circuit (combination of paths, each containing 1 or more circuit elements)
 - Lumped model
- The *Current versus voltage characteristics (I-V plot)* is a universal means of describing a circuit element.
- *Kirchhoff's current law (KCL)* states that the algebraic sum of all currents at any node in a circuit equals zero.
 - Comes from conservation of charge
- *Kirchhoff's voltage law (KVL)* states that the algebraic sum of all voltages around any closed path in a circuit equals zero.
 - Comes from conservation of potential energy

Chapters 3 and 4

- Outline
 - Resistors in Series Voltage Divider
 - Conductances in Parallel Current Divider
 - Node-Voltage Analysis
 - Mesh-Current Analysis
 - Superposition
 - Thévenin equivalent circuits
 - Norton equivalent circuits
 - Maximum Power Transfer

Ung.

Chep. 3

Resistors in Series

Voltage Divider

(AUTION: Voltage Divider Formula ment be vield unter Care.

$$V_{2} = I R_{2}$$

 $V_{2} = I R_{2}$
 $= \left\{ \frac{V_{55}}{R_{1} + R_{2} + \sqrt{(R_{3} + R_{2})} \right\} R_{2}$
 $= \left\{ \frac{V_{55}}{R_{1} + R_{2} + \sqrt{(R_{3} + R_{2})} \right\} R_{2}$
EE100 Summer 2008 Side 16

Resistors in Parallel

Consider a circuit with two resistors connected in parallel. Find their "equivalent resistance".

Bharathwaj Muthuswamy

General Formula for Parallel Resistors

What single resistance R_{eq} is equivalent to three resistors in parallel?

Equivalent conductance of resistors in parallel is the sum

EE100 Summer 2008

Bharathwaj Muthuswamy

Generalized Current Divider Formula

Consider a current divider circuit with >2 resistors in parallel:

Measuring Voltage

To measure the voltage drop across an element in a real circuit, insert a voltmeter (digital multimeter in voltage mode) **in parallel** with the element.

Voltmeters are characterized by their "voltmeter input resistance" (R_{in}). Ideally, this should be very high (typical value 10 M Ω)

Effect of Voltmeter

undisturbed circuit

circuit with voltmeter inserted

$$R_{in} = 10M, V_2' = ?$$

of Voltmeter Effect

Measuring Current

To measure the current flowing through an element in a real circuit, insert an ammeter (digital multimeter in current mode) **in series** with the element.

Ammeters are characterized by their "ammeter input resistance" (R_{in}). Ideally, this should be very low (typical value 1 Ω).

Using Equivalent Resistances

Simplify a circuit before applying KCL and/or KVL:

Example: Find I

Labs #1 and #2

- COME ON TIME FOR THE LABS!
- UNDERSTAND how to use the breadboard!
- You need to get familiar with the instruments: feel free to use TA office hours for extra help.
- You will be given a kit next week with all components for the lab. Thus you could "pre-wire" your circuit before coming to lab!
- Lab #1: Instruments
- Lab #2: Circuits. Lab #2 depends on chapter 4, especially the Thevenin equivalents. I will cover Thevenin equivalents by July 2nd (Wednesday) lecture, but please READ chapter 4 this weekend!