EE100 Su08 Lecture \#3 (June 27 ${ }^{\text {th }}$ 2008)

- Administrivia
- Videos for lectures 1 and 2 are up (WMV format). Quality is pretty good © $^{-}$.
- For today:
- Questions?
- Wrap up chapter 2.
- Start chapter 3. Refer to pdf slides for week 2.
- An outline of Labs \#1 and \#2.

Generalization of KCL

- The sum of currents entering/leaving a closed surface is zero. Circuit branches can be inside this surface, i.e. the surface can enclose more than one node!

This could be a big chunk of a circuit, e.g. a "black box"

Generalized KCL Examples

Using Kirchhoff's Voltage Law (KVL)

Consider a branch which forms part of a loop. One possibility for sign convention:

Moving from + to We add V_{1}

Moving from - to + We subtract \mathbf{V}_{2}

- Use reference polarities to determine whether a voltage is dropped
- No concern about actual voltage polarities

Formulations of Kirchhoff's Voltage Law

(Conservation of energy) ex.

Formulation 1:

Sum of voltage drops around loop

$$
11=v_{1}+v_{2} \text { sum of voltage rises around loop }
$$

Formulation 2: $\quad-v_{2}-v_{1}+11=0$
Algebraic sum of voltage drops around loop $=0$

- Voltage rises are included with a minus sign.
(Handy trick: Look at the first sign you encounter on each element when tracing the loop.)
Formulation 3: $\quad v_{1}+v_{2}-11=0$
Algebraic sum of voltage rises around loop $=0$
- Voltage drops are included with a minus sign.

A Major Implication of KVL

- KVL tells us that any set of elements which are connected at both ends carry the same voltage.
- We say these elements are connected in parallel.

(pardlet)

Applying KVL in the clockwise direction,
starting at the top:

$$
+V_{b}-V_{a}=0
$$

$$
v_{b}-v_{a}=0 \quad \rightarrow \quad v_{b}=v_{a}
$$

KVL Example

Three closed paths:

Note: I use Physic:

Path 1: $\quad V_{a}-V_{2}-V_{b}=0 \mathrm{~V}$
Path 2: $\quad V_{b}+V_{3}-V_{c}=0 \quad V$
Path 3: $\quad V_{\omega}-V_{2}+V_{3}-v_{c}=0 V$

I-V Characteristic of Elements

Find the $I-V$ characteristic.

$$
\Rightarrow v_{R}=v-v_{S}
$$

$$
\left(v_{s}>0\right)
$$

\therefore Ohmis law: $i=\frac{V_{R}}{R}=\frac{V-V_{s}}{R} \Rightarrow i=\frac{1}{R} V=\frac{V_{s}}{R}$

More Examples

- Are these interconnections permissible?

b
$\xrightarrow{\text { KCL QUa" }}: 25=20+5$
KL:

$$
\begin{aligned}
& V_{2}-100+60-Y_{1}=0 \\
& \Rightarrow \quad V_{2}-V_{1}=40
\end{aligned}
$$

Power: $25 \mathrm{~A}: p_{1}=25 v_{1} \quad 5 \mathrm{~A}: p_{3}=-5 v_{2}$

$$
\text { 20Ai } P_{2}=-20 v_{1} \quad \frac{1000:}{10} P_{4}=+500 \mathrm{w} /
$$

Power: $\sum_{i} p_{i}=0$

$$
\begin{aligned}
& \Rightarrow \quad p_{1}+p_{2}+p_{3}+p_{4}+p_{5}=0 \\
& \Rightarrow \quad 25 v_{1}-20 v_{1}-5 v_{2}+500-300=0 \\
& \Rightarrow \quad 5 v_{1}-5 v_{2}+200=0 \\
& \Rightarrow \quad 5 v_{2}-5 v_{1}=200 \\
& \Rightarrow \quad v_{2}-v_{1}=40
\end{aligned}
$$

$\uplus_{\text {Please try yourself, port on }}$ bspace if you have question.

Summary

- An electrical system can be modeled by an electric circuit (combination of paths, each containing 1 or more circuit elements)
- Lumped model
- The Current versus voltage characteristics (I-V plot) is a universal means of describing a circuit element.
- Kirchhoff's current law (KCL) states that the algebraic sum of all currents at any node in a circuit equals zero.
- Comes from conservation of charge
- Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around any closed path in a circuit equals zero.
- Comes from conservation of potential energy

Chapters 3 and 4

- Outline
- Resistors in Series - Voltage Divider
- Conductances in Parallel - Current Divider
- Node-Voltage Analysis
- Mesh-Current Analysis
- Superposition
- Thévenin equivalent circuits
- Norton equivalent circuits
- Maximum Power Transfer

Resistors in Series

Consider a circuit with multiple resistors connected in series.

Equivalent resistance of resistors in series is the sum

Voltage Divider

When can the Voltage Divider Formula be Used?

Correct, if nothing else is connected to nodes
(AUTION: Voltage Divider Formula must be use with care.

Resistors in Parallel

Consider a circuit with two resistors connected in parallel. Find their "equivalent resistance".

- KVL tells us that the across each resistor

$$
V_{x}=I_{1} R_{1}=I_{2} R_{2}
$$

- KCL tells us ${ }^{\circ}$

$$
I_{S r}=I_{1}+I_{2}
$$

$$
\left.I_{0} \uparrow V_{x}^{+}\right\} R_{\text {eq }} V_{x x}=I_{s s} R_{e q} \quad \Rightarrow \frac{V_{x}}{R_{e q}}=\frac{V_{x}}{R_{1}}+\frac{V_{x}}{R_{2}}
$$ same voltage is dropped

General Formula for Parallel Resistors
What single resistance $R_{\text {eq }}$ is equivalent to three resistors in parallel?

Econ to derive yourself.

Equivalent conductance of resistors in parallel is the sum

Some important observations about $11^{\text {the }}$ roister
(1) Two resistor in $)^{\text {be }}$
les $\int_{R_{1}} \leqslant R_{2} \frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

$$
\Rightarrow \frac{1}{R_{\text {eq }}}=\frac{R_{1}+R_{2}}{R_{1} R_{2}} \Rightarrow R_{\text {eq }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

As $R_{1} \rightarrow O_{,} R_{\text {eq }}=\frac{O \cdot R_{2}}{O+R_{2}}=0$

Current Divider

(Q,) Find $I_{1} \& I_{2}$ in terme of $I_{S S}, R_{1} \& R_{\varepsilon}$?
$V_{x}=I_{1} R_{1}=I_{S S} R_{e q}$
But, $R_{\text {eg }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

$\therefore I_{1} R_{1}=I_{S J} \cdot \frac{R_{1} R_{2}}{R_{1}+R_{2}}$

$$
I_{2=} \frac{R_{1}}{R_{1}+R_{2}} I_{S S}
$$

Generalized Current Divider Formula

Consider a current divider circuit with >2 resistors in parallel:

Measuring Voltage

To measure the voltage drop across an element in a real circuit, insert a voltmeter (digital multimeter in voltage mode) in parallel with the element.

Voltmeters are characterized by their "voltmeter input resistance" ($\boldsymbol{R}_{\text {in }}$). Ideally, this should be very high
(typical value $10 \mathrm{M} \Omega$)

Effect of Voltmeter

undisturbed circuit

$$
\mathrm{V}_{2}=\mathrm{V}_{\mathrm{SS}}\left[\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right]
$$

circuit with voltmeter inserted

Example: $\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{R}_{2}=100 \mathrm{~K}, \mathrm{R}_{1}=900 \mathrm{~K} \Rightarrow \mathrm{~V}_{2}=1 \mathrm{~V}$

$$
R_{i n}=10 M, V_{2}^{\prime}=?
$$

Effect of V oltmeter

Step (1): $10 \mathrm{~m} \| 100 \mathrm{k}=\frac{10 \mathrm{~m} \cdot 100 \mathrm{k}}{10 \mathrm{~m}+100 \mathrm{k}}=\frac{1000 \times 10^{6} \times 10^{3}}{10 \mathrm{~m}+0.1 \mathrm{~m}} \approx 100 \mathrm{k}$
Moral: inteme Resistance of a voltmeter is reallo big.

Measuring Current

To measure the current flowing through an element in a real circuit, insert an ammeter (digital multimeter in current mode) in series with the element.

Ammeters are characterized by their "ammeter input resistance" ($\boldsymbol{R}_{\text {in }}$). Ideally, this should be very low (typical value 1Ω).

Effect of Ammeter

Measurement error due to non-zero input resistance:

undisturbed circuit

$$
I=\frac{V_{1}}{R_{1}+R_{2}}
$$

circuit with ammeter inserted

$I_{\text {meas }}=\frac{V_{1}}{R_{1}+R_{2}+R_{\text {in }}}$

Example: $\mathrm{V}_{1}=1 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=500 \Omega, \mathrm{R}_{\text {in }}=1 \Omega$

$$
I=\frac{1 V}{500 \Omega+500 \Omega}=1 \mathrm{~mA}, \quad I_{\text {meas }}=?
$$

Compare to
R_{2}

Using Equivalent Resistances

Simplify a circuit before applying KCL and/or KVL:

Example: Find I

Wheatstone's Bridge (Section 3.6)

$$
\begin{aligned}
& \text { (1)Read it } \rightarrow \text { You will need it for lab } ⿻ \text { ? } \\
& \text { (2) Skip } 3-7\left(N_{0} \Delta-y\right)
\end{aligned}
$$

Labs \#1 and \#2

- COME ON TIME FOR THE LABS!
- UNDERSTAND how to use the breadboard!
- You need to get familiar with the instruments: feel free to use TA office hours for extra help.
- You will be given a kit next week with all components for the lab. Thus you could "prewire" your circuit before coming to lab!
- Lab \#1: Instruments
- Lab \#2: Circuits. Lab \#2 depends on chapter 4, especially the Thevenin equivalents. I will cover Thevenin equivalents by July $2^{\text {nd }}$ (Wednesday) lecture, but please READ chapter 4 this weekend!

