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EE100Su08 Lecture #6 (July 7th 2008)
• Outline

– Today:
• Midterm on Monday, 07/14/08 from 2 – 4 pm

– Second room location changed to 120 Latimer
• Questions?
• Chapter 4 wrap up

– Thevenin and Norton
– Source Transformations
– Miscellaneous:

» Maximum Power Transfer theorem

• Chapter 6 wrap up
– Capacitors (definition, series and parallel combination)
– Inductors (definition, series and parallel combination)

• Chapter 7:  Intuitive Introduction
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Recap:  Thevenin Equivalents
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RTh Calculation Example #2
Find the Thevenin equivalent with respect to the terminals a,b:

Since there is no independent source and we cannot 
arbitrarily turn off the dependence source, we can add a 
voltage source Vx across terminals a-b and measure the 
current through this terminal Ix .  Rth= Vx/ Ix

Vx

+

-

Ix
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Norton equivalent circuit

Norton Equivalent Circuit
• Any* linear 2-terminal (1-port) network of indep. voltage 

sources, indep. current sources, and linear resistors can 
be replaced by an equivalent circuit consisting of an 
independent current source in parallel with a resistor
without affecting the operation of the rest of the circuit.

network
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I-V Characteristic of Norton Equivalent
• The I-V characteristic for the parallel combination of 

elements is obtained by adding their currents:

i

i = IN-Gv

I-V characteristic 
of resistor: i=Gv

I-V
characteristic 
of current 
source: i = -IN

For a given voltage vab, the current i is 
equal to the sum of the currents in 
each of the two branches:

v

i
+

vab

–
iN

b

RN

a
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Finding IN and RN = RTh

IN ≡ isc = VTh/RTh

Analogous to calculation of Thevenin Eq. Ckt:

1) Find o.c voltage and s.c. current

2) Or, find s.c. current and Norton (Thev) resistance
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Source Transforms: Finding IN and RN

• We can derive the Norton equivalent circuit from 
a Thévenin equivalent circuit simply by making a 
“source transformation”: 
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+
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Source Transformations
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Source Transformations
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Source Transformations
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Source Transformations
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Maximum Power Transfer Theorem

A resistive load receives maximum power from a circuit if the 
load resistance equals the Thévenin resistance of the circuit.
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To find the value of RL for which p is maximum, set           to 0:

Power absorbed by load resistor:

LdR
dp
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Summary of Techniques for Circuit Analysis -1

• Resistor network (Chapter 3)
– Parallel resistors
– Series resistors
– Voltage Divider
– Current Divider
– Voltmeters and Ammeters
– Y-delta conversion: OPTIONAL
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Summary of Techniques for Circuit Analysis -2
• Node Analysis (Chapter 4)

– Node voltage is the unknown
– Solve for KCL
– Floating voltage source using super node 

• Superposition
– Leave one independent source on at a time
– Sum over all responses
– Voltage off SC
– Current off OC

• Mesh Analysis: OPTIONAL
– Loop current is the unknown
– Solve for KVL
– Current source using super mesh

• Thevenin and Norton Equivalent Circuits
– Solve for OC voltage
– Solve for SC current

• Source Transforms:
– Voltage sources in series with a resistance can be converted to current 

source in parallel with a resistance.
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Comments on Dependent Sources

• Node-Voltage Method 
– Dependent current source: 

• treat as independent current source in organizing 
node eqns

• substitute constraining dependency in terms of 
defined node voltages.

– Dependent voltage source: 
• treat as independent voltage source in organizing 

node eqns
• Substitute constraining dependency in terms of 

defined node voltages.
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Comments on Dependent Sources (contd.)
A dependent source establishes a voltage or current 
whose value depends on the value of a voltage or 
current at a specified location in the circuit.

(device model, used to model behavior of transistors & amplifiers)

To specify a dependent source, we must identify:
1. the controlling voltage or current (must be calculated, in general)
2. the relationship between the controlling voltage or current 

and the supplied voltage or current
3. the reference direction for the supplied voltage or current

The relationship between the dependent source
and its reference cannot be broken!

– Dependent sources cannot be turned off for various 
purposes (e.g. to find the Thévenin resistance, or in 
analysis using Superposition).
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Chapters 6

• Outline
– The capacitor
– The inductor
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The Capacitor
Two conductors (a,b) separated by an insulator:

difference in potential = Vab
=> equal & opposite charge Q on conductors

Q = CVab

where C is the capacitance of the structure, 
positive (+) charge is on the conductor at higher potential

Parallel-plate capacitor:
• area of the plates = A (m2)
• separation between plates = d (m)
• dielectric permittivity of insulator = ε
(F/m)

=> capacitance d
AC ε

=

(stored charge in terms of voltage)

F
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A note on circuit variables
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Symbol:

Units:  Farads (Coulombs/Volt)

Current-Voltage relationship:

or

Note: Q  (vc) must be a continuous function of time

Capacitor

+
vc
–

ic

dt
dCv

dt
dvC

dt
dQi c

c
c +==

C C

(typical range of values: 1 pF to 1 µF; for “supercapa-
citors” up to a few F!)

+

Electrolytic (polarized)
capacitor

C

If C (geometry) is unchanging, iC = C dvC/dt
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Voltage in Terms of Current
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Uses:  Capacitors are used to store energy for camera flashbulbs,
in filters that separate various frequency signals, and
they appear as undesired “parasitic” elements in circuits where
they usually degrade circuit performance
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You might think the energy stored on a capacitor is QV = 
CV2, which has the dimension of Joules.  But during 
charging, the average voltage across the capacitor was 
only half the final value of V for a linear capacitor.

Thus, energy is .2
2
1       

2
1 CVQV =

Example: A 1 pF capacitance charged to 5 Volts 
has  ½(5V)2 (1pF) = 12.5 pJ
(A 5F supercapacitor charged to 5
volts stores 63 J; if it discharged at a
constant rate in 1 ms energy is
discharged at a 63 kW rate!)

Stored Energy
CAPACITORS STORE ELECTRIC ENERGY
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A more rigorous derivation

This derivation holds 
independent of the circuit!
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Capacitors in Series

i(t)
C1

+   v1(t)  –

i(t)

+

v(t)=v1(t)+v2(t)

–
Ceq

C2

+   v2(t)  –

21

111
CCCeq

+=



Slide 25EE100 Summer 2008 Bharathwaj Muthuswamy

Capacitive Voltage Divider
Q: Suppose the voltage applied across a series combination 

of capacitors is changed by ∆v.  How will this affect the 
voltage across each individual capacitor?

21 vvv ∆+∆=∆

v+∆v
C1

C2

+
v2(t)+∆v2
–

+
v1+∆v1
–+

–

Note that no net charge can
can be introduced to this node.
Therefore, −∆Q1+∆Q2=0

Q1+∆Q1

-Q1−∆Q1

Q2+∆Q2

−Q2−∆Q2

∆Q1=C1∆v1

∆Q2=C2∆v2

2211  vCvC ∆=∆⇒
v

CC
Cv ∆
+

=∆
21

1
2

Note: Capacitors in series have the same incremental 
charge.



Slide 26EE100 Summer 2008 Bharathwaj Muthuswamy

Symbol:

Units:  Henrys (Volts • second / Ampere)

Current in terms of voltage:

Note: iL must be a continuous function of time

Inductor

+
vL
–

iL

∫ +=

=

t

t
LL
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tidv
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ti

dttv
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)(1

0ττ

L

(typical range of values: µH to 10 H)
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Stored Energy

Consider an inductor having an initial current i(t0) = i0

2
0

2

2
1

2
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LiLitw
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titvtp

t

t

−=

==

==

∫ ττ

INDUCTORS STORE MAGNETIC ENERGY
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Inductors in Series and Parallel

Common
Current

Common
Voltage
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Capacitor

v cannot change instantaneously
i can change instantaneously
Do not short-circuit a charged
capacitor (-> infinite current!)

n cap.’s in series:

n cap.’s in parallel:

In steady state (not time-varying), 
a capacitor behaves like an open 
circuit.

Inductor

i cannot change instantaneously
v can change instantaneously
Do not open-circuit an inductor with 
current (-> infinite voltage!)

n ind.’s in series:

n ind.’s in parallel:

In steady state, an inductor 
behaves like a short circuit.

Summary
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Chapter 7: Intuitive Introduction
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Chapter 7: Intuitive Introduction
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Chapter 7: Intuitive Introduction


