EE100Su08 Lecture \#9 (July 16 ${ }^{\text {th }}$ 2008)

- Outline
- HW \#1s and Midterm \#1 returned today
- Midterm \#1 notes
- HW \#1 and Midterm \#1 regrade deadline: Wednesday, July 23 ${ }^{\text {rd }} 2008$, 5:00 pm PST. Procedure:
- HW \#1: Bart's office hours
- Midterm \#1: Attach a note to the FRONT of your test with your complaint and drop it in HW box
- Questions?
- This week: Operational Amplifiers (Op-Amps)
- Op-Amp Model
- Negative Feedback for Stability
- Components around Op-Amp define the Circuit Function
- Nonlinear circuits
- Op-Amp from 2-Port Blocks

The Operational Amplifier

- The operational amplifier ("op amp") is a basic building block used in analog circuits.
- Its behavior is modeled using a dependent source.
- When combined with resistors, capacitors, and inductors, it can perform various useful functions:
- amplification/scaling of an input signal
- sign changing (inversion) of an input signal
- addition of multiple input signals
- subtraction of one input signal from another
- integration (over time) of an input signal
- differentiation (with respect to time) of an input signal
- analog filtering
- nonlinear functions like exponential, log, sqrt, etc
- Isolate input from output; allow cascading

Op Amp Terminals

- 3 signal terminals: 2 inputs and 1 output
- IC op amps have 2 additional terminals for DC power supplies
- Common-mode signal $=\left(v_{1}+v_{2}\right) / 2$
- Differential signal $=v_{1}-v_{2}$

Op Amp "Notation" and Model
Ref. (1) Chapter 5 of your book ${ }^{\text {Reared all }}$ of it! (2) Into. to Nonlinear Circuit Arris]

Op Amp "Notation" and Model

Op Amp "Notation" and Model

Op Amp "Notation" and Model

Op Amp "Notation" and Model

Uspel op-amp circuts (1) Voltage follower.
$v_{i n}$
(ai) Plot V_{0} us vin $\left[\begin{array}{r}\text { [i.e. voltage transfer } \\ \text { characterisis }\end{array}\right]$

Usepl opeamp circuts (1) Voltage follower.

Usgel opamp circuib (I) Noltage follower.
(6) How is this urefl?
 b done Bis!

Wept beewse it avoids "Yoading" Ka soure
eng

Usphe opamp circuib (I) PoSitive Ferdrack

Summing-Point Constraint

- Check if under negative feedback
- Small v_{i} result in large v_{0}
- Output v_{0} is connected to the inverting input to reduce V_{i}
- Resulting in $v_{i}=0$
- Summing-point constraint
$-\mathrm{v}_{1}=\mathrm{v}_{2}$
$-i_{1}=i_{2}=0$
- Virtual short circuit
- Not only voltage drop is 0 (which is short circuit), input current is 0
- This is different from short circuit, hence called "virtual" short circuit.

Ideal Op-Amp Analysis Technique

Assumption 1: The potential between the op-amp input terminals, $v_{(+)}-$ $v_{(-)}$, equals zero.

Assumption 2: The currents flowing into the op-amp's two input terminals both equal zero.

EXAMPLE

Ideal Op-Analysis: Non-Inverting Amplifier

Assumption 1: The potential between the op-amp input terminals, $v_{(+)}-$ $v_{(-)}$, equals zero.

Assumption 2: The currents flowing into the op-amp's two input terminals both equal zero.

$\mathbf{V}_{\text {IV }}$ appears here

$$
\begin{aligned}
& \frac{v_{\text {in }}}{R_{1}}+\frac{v_{\text {in }}-v_{\text {out }}}{R_{2}}=0 \\
& v_{\text {out }}=\frac{R_{1}+R_{2}}{R_{1}} v_{\text {in }}
\end{aligned}
$$

Non-inverting Amplifier

Non-Inverting Amplifier

- Ideal voltage amplifier

Closed loop gain $=A_{v}=\frac{v_{o}}{v_{i n}}$
$v_{1}=v_{2}=v_{\text {in }}, i_{1}=i_{2}=0$
Use KCL At Node 2.
$i=\frac{\left(v_{0}-v_{2}\right)}{R_{2}}=\frac{\left(v_{2}-0\right)}{R_{1}}$
$A=\frac{v_{o}}{v_{\text {in }}}=\frac{\left(R_{1}+R_{2}\right)}{R_{1}}$
Input impedance $=\frac{v_{\text {in }}}{i} \rightarrow \infty$

Ideal Op-Amp Analysis: Inverting Amplifier

$$
V_{\text {OUT }}=V_{R}-\frac{R_{2}}{R_{1}}\left(V_{\text {in }}-V_{R}\right)
$$

Inverting Amplifier with reference voltage

Inverting Amplifier

- Negative feedback $\rightarrow \quad$ Closed loop gain $=A_{v}=\frac{v_{o}}{v_{i n}}$ checked
- Use summing-point constraint

$$
v_{1}=v_{2}=0, i_{1}=i_{2}=0
$$

Use KCL At Node 2.

$$
\begin{aligned}
& i=\frac{\left(v_{\text {in }}-v_{2}\right)}{R_{1}}=\frac{\left(v_{\text {out }}-v_{2}\right)}{R_{2}} \\
& v_{o}=-\frac{R_{2} v_{o}}{R_{1}}
\end{aligned}
$$

$$
\sum_{=}^{\}} R_{L}^{\text {Input impedance }=\frac{v_{i n}}{i}=R_{1}}
$$

Ideal voltage source - independent of load resistor

Voltage Follower

$R_{2}=0$
$R_{1} \rightarrow \infty$
$i=\frac{\left(v_{0}-v_{2}\right)}{R_{2}}=\frac{\left(v_{2}-0\right)}{R_{1}}$
$A=\frac{v_{o}}{v_{\text {in }}}=\frac{\left(R_{1}+R_{2}\right)}{R_{1}}=1+\frac{R_{2}}{R_{1}}=1$

Ocanes in nesctive feethars:

(ai) Find i。
Rule of thumb tor -ve feedrack;
(1) Use Sumning point constroint:'
(i) Assune op ramp is linear:

$$
v_{p}=v_{n} \&
$$

Check if

$$
-V_{c c}<V_{0}<V_{c c}
$$

Ocapes in nesclive teethars:

Ocapes in nesclive teethars:

Ocaps in nesclive teeflaws:

Op-anes in negctive teethars:

Opapes in negctive teethars:

Summing Amplifier

Difference Amplifier

Integrator

- Want

$$
v_{o}=K \int v_{\text {in }} d t
$$

- What is the difference
 between:

$$
v_{O} \approx \frac{1}{R C} \int_{-\infty}^{t} v_{I} d t
$$

$$
v_{o}=-\frac{1}{C} \int_{-\infty} \frac{v_{1}}{R} d t
$$

Differentiator

- Want

Nonlinear Opamp Circuits

- Start reading through online notes: "Introduction to nonlinear circuit analysis".
- Outline:
- Differences between positive and negative feedback.
- Oscillator circuit.

High Quality Dependent Source In an Amplifier

AMPLIFIER SYMBOL

Differential Amplifier

$$
\mathrm{V}_{0}=\mathrm{A}\left(\mathrm{~V}_{+}-\mathrm{V}_{-}\right)
$$

AMPLIFIER MODEL

Circuit Model in linear region

V_{0} depends only on input $\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right)$
See the utility of this: this Model when used correctly mimics the behavior of an amplifier but omits the complication of the many many transistors and other components.

Model for Internal Operation

- A is differential gain or open loop gain
- Ideal op amp

$$
\begin{aligned}
& A \rightarrow \infty \\
& R_{i} \rightarrow \infty \\
& R_{o}=0
\end{aligned}
$$

- Common mode gain $=0$
$v_{c m}=\frac{\left(v_{1}+v_{2}\right)}{2}, v_{d}=v_{1}-v_{2}$
$v_{o}=A_{c m} v_{c m}+A_{d} v_{d}$
Since $v_{o}=A\left(v_{1}-v_{2}\right), A_{c m}=0$
- Circuit Model

Model and Feedback

- Negative feedback
- connecting the output port to the negative input (port 2)
- Positive feedback
- connecting the output port to the positive input (port 1)
- Input impedance: R looking into the input terminals
- Output impedance: Impedance in series with the output terminals
- Circuit Model

Op-Amp and Use of Feedback

A very high-gain differential amplifier can function in an extremely linear fashion as an operational amplifier by using negative feedback.

Circuit Model
Negative feedback \Rightarrow Stabilizes the output
Hambley Example pp. 644 for Power Steering
We can show that that for $\mathrm{A} \rightarrow \infty$ and $\mathrm{R}_{\mathrm{i}} \rightarrow \infty$,

$$
\mathrm{V}_{0} \cong \mathrm{~V}_{\mathrm{IN}} \cdot \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}} \quad \begin{aligned}
& \text { Stable, finite, and independent of } \\
& \text { the properties of the OP AMP! }
\end{aligned}
$$

Application: Digital-to-Analog Conversion

A DAC can be used to convert the digital representation Binary Analog of an audio signal into an analog voltage that is then used to drive speakers -- so that you can hear it!
"Weighted-adder DIA converter"

4-Bit D/A
(Transistors are used as electronic switches)

S1 closed if LSB =1
S2 " if next bit = 1
S3 " if " " = 1
S4 " if MSB = 1

number	output (volts)
0000	0
0001	. 5
0010	1
0011	1.5
0100	2
0101	2.5
0110	3
0111	3.5
1000	4
1001	4.5
1010	5
1011	5.5
1100	6
1101	6.5
1110	7
1111	7.5

Characteristic of 4-Bit DAC

