EE100Su08 Lecture #9 (July 16th 2008)

- Outline
 - HW #1s and Midterm #1 returned today
 - Midterm #1 notes
 - HW #1 and Midterm #1 regrade deadline: Wednesday, July 23rd 2008, 5:00 pm PST. Procedure:
 - HW #1: Bart's office hours
 - Midterm #1: Attach a note to the FRONT of your test with your complaint and drop it in HW box
 - Questions?
 - This week: Operational Amplifiers (Op-Amps)
 - Op-Amp Model
 - Negative Feedback for Stability
 - Components around Op-Amp define the Circuit Function
 - Nonlinear circuits
 - Op-Amp from 2-Port Blocks

The Operational Amplifier

- The operational amplifier ("op amp") is a basic building block used in analog circuits.
 - Its behavior is modeled using a dependent source.
 - When combined with resistors, capacitors, and inductors, it can perform various useful functions:
 - amplification/scaling of an input signal
 - sign changing (inversion) of an input signal
 - addition of multiple input signals
 - subtraction of one input signal from another
 - integration (over time) of an input signal
 - differentiation (with respect to time) of an input signal
 - analog filtering
 - nonlinear functions like exponential, log, sqrt, etc
 - Isolate input from output; allow cascading

Op Amp Terminals

- 3 signal terminals: 2 inputs and 1 output
- IC op amps have 2 additional terminals for DC power supplies
- Common-mode signal= $(v_1+v_2)/2$
- Differential signal = $v_1 v_2$

Op Amp "Notation" and Model
(Inside:
$$v_{2} = A(v_{1}v_{2}-v_{1}) - O$$

For all prediced circuite $|V_{1}| < 2A$
exp: $A = 10^{6}$, $V_{2} \leq (9V_{2}-9V)$
 $\therefore O = N_{1}-v_{2} = \frac{V_{0}}{A}$
 $\Rightarrow V_{1}-v_{2} \approx O$
 $\Rightarrow V_{2}-v_{1} \approx O$
 $\Rightarrow V_{2}-v_{2} \approx O$
 $\Rightarrow V_$

Op Amp "Notation" and Model (٧,,,>) No Kno 10 ibeopretive Dn-G lincor Sis be zero!) (linear, the rail 8 Noz NEED NOT - 40 AÊ W. LV EE100 Summer 2008 Slide 9 Bharathwaj Muthuswamy

Usehl openp circuts (1) Voltage follower.
Nin
$$VP$$

 $Voltage follower openp is in two real
 $Voltage follower openp is in tw$$

Use Promp circuits (1) Voltage follower.
Vin UP (Voltage follower.)
Vin UP (Voltage follower.)
Vin UP (Voltage follower.)
Vin UP (Voltage follower.)
Voltage Voltage (Voltage follower.)

$$V = (Voltage follower.)$$

(Negetive foodbacke)
Rocht:
Voltage foodbacke)
Rocht:
Voltage foodbacke)
 $V = (Voltage for Voltage for Vol$

Summing-Point Constraint

- Check if under negative feedback
 - Small v_i result in large v_o
 - Output v_{o} is connected to the inverting input to reduce v_{i}
 - Resulting in $v_i=0$
- Summing-point constraint

$$-v_1 = v_2$$

 $-i_1 = i_2 = 0$

- Virtual short circuit
 - Not only voltage drop is 0 (which is short circuit), input current is 0
 - This is different from short circuit, hence called "virtual" short circuit.

Ideal Op-Analysis: Non-Inverting Amplifier

Assumption 1: The potential between the op-amp input terminals, $v_{(+)} - v_{(-)}$, equals zero.

Assumption 2: The currents flowing into the op-amp's two input terminals both equal zero.

Non-Inverting Amplifier

• Ideal voltage amplifier

Closed loop
$$gain = A_v = \frac{v_o}{v_{in}}$$

 $v_1 = v_2 = v_{in}$, $i_1 = i_2 = 0$
Use KCL At Node 2.
 $i = \frac{(v_0 - v_2)}{R_2} = \frac{(v_2 - 0)}{R_1}$
 $A = \frac{v_o}{v_{in}} = \frac{(R_1 + R_2)}{R_1}$
Input impedance $= \frac{v_{in}}{i} \rightarrow \infty$

Inverting Amplifier

- Negative feedback → checked
- Use summing-point constraint

Closed loop $gain = A_v = \frac{v_o}{v_o}$ $v_1 = v_2 = 0$, $i_1 = i_2 = 0$ Use KCL At Node 2. $i = \frac{(v_{in} - v_2)}{R_1} = \frac{(v_{out} - v_2)}{R_2}$ $v_o = -\frac{R_2 v_o}{R_1}$ $R_{l}^{Input impedance} = \frac{V_{in}}{i} = R_{1}$

Ideal voltage source – independent of load resistor

V₀

Vin

reschive (Q) find is ℓ_{k} 5.3 70 91 Rule of thumb for -ve feedback; 124 Vo 64 U ISK Disc Summing point constraint! (i) Assume op camp is linear! Np= Vn & Check if - Nec LV- CNCC

Summing Amplifier

Integrator

• Want
$$v_o = K \int v_{in} dt$$

• What is the difference between:

$$v_O \approx \frac{1}{RC} \int_{-\infty}^{t} v_I dt$$

Nonlinear Opamp Circuits

- Start reading through online notes: "Introduction to nonlinear circuit analysis".
- Outline:
 - Differences between positive and negative feedback.
 - Oscillator circuit.

Slide 33

High Quality Dependent Source In an Amplifier

 V_0 depends only on input $(V_+ - V_-)$

See the utility of this: this Model when used correctly mimics the behavior of an amplifier but omits the complication of the many many transistors and other components.

EE100 Summer 2008

Model for Internal Operation

- A is differential gain or open loop gain
- Ideal op amp

$$A \to \infty$$
$$R_i \to \infty$$
$$R_o = 0$$

$$v_{cm} = \frac{(v_1 + v_2)}{2}$$
, $v_d = v_1 - v_2$

$$v_o = A_{cm}v_{cm} + A_dv_d$$

Since $v_o = A(v_1 - v_2)$, $A_{cm} = 0$

Circuit Model

Model and Feedback

- Negative feedback
 - connecting the output port to the negative input (port 2)
- Positive feedback
 - connecting the output port to the positive input (port 1)
- Input impedance: R looking into the input terminals
- Output impedance: Impedance in series with the output terminals

Op-Amp and Use of Feedback

A very high-gain differential amplifier can function in an extremely linear fashion as an operational amplifier by using negative feedback.

Application: Digital-to-Analog Conversion

