EE100Su08 Lecture \#11 (July 21 ${ }^{\text {st }}$ 2008)

- Bureaucratic Stuff
- Lecture videos should be up by tonight
- HW \#2: Pick up from office hours today, will leave them in lab.

REGRADE DEADLINE: Monday, July $28^{\text {th }} 2008,5: 00$
pm PST, Bart's office hours.

- HW \#1: Pick up from lab.
- Midterm \#1: Pick up from me in OH

REGRADE DEADLINE: Wednesday, July 23rd 2008 , 5:00 pm PST. Midterm: drop off in hw box with a note attached on the first page explaining your request.

- OUTLINE
- QUESTIONS?
- Op-amp MultiSim example
- Introduction and Motivation
- Arithmetic with Complex Numbers (Appendix B in your book)
- Phasors as notation for Sinusoids
- Complex impedances
- Circuit analysis using complex impedances
- Derivative/Integration as multiplication/division
- Phasor Relationship for Circuit Elements
- Frequency Response and Bode plots
- Reading
- Chapter 9 from your book (skip 9.10, 9.11 (duh)), Appendix E* (skip second-order resonance bode plots)
- Chapter 1 from your reader (skip second-order resonance bode plots)

Op-amps: Conclusion

- Questions?

Ex 5-20 what do you mean by a "weighting factor"?
A: Redd to the summing amplifier!

- MultiSim Example

Types of Circuit Excitation

Steady-State Excitation (DC Steady-State)

Linear TimeInvariant Circuit

Sinusoidal (SingleFrequency) Excitation \rightarrow AC Steady-State

OR

Transient Excitation

Why is Single-Frequency Excitation Important?

- Some circuits are driven by a single-frequency sinusoidal source.
- Some circuits are driven by sinusoidal sources whose frequency changes slowly over time.
- You can express any periodic electrical signal as a sum of single-frequency sinusoids - so you can analyze the response of the (linear, timeinvariant) circuit to each individual frequency component and then sum the responses to get the total response.
- This is known as Fourier Transform and is tremendously important to all kinds of engineering disciplines!

Representing a Square Wave as a Sum of Sinusoids

(a)Square wave with 1-second period. (b) Fundamental component (dotted) with 1-second period, third-harmonic (solid black) with1/3-second period, and their sum (blue). (c) Sum of first ten components. (d) Spectrum with 20 terms.

Steady-State Sinusoidal Analysis

- Also known as AC steady-state
- Any steady state voltage or current in a linear circuit with a sinusoidal source is a sinusoid.
- This is a consequence of the nature of particular solutions for sinusoidal forcing functions.
- All AC steady state voltages and currents have the same frequency as the source.
- In order to find a steady state voltage or current, all we need to know is its magnitude and its phase relative to the source
- We already know its frequency.
- Usually, an AC steady state voltage or current is given by the particular solution to a differential equation.

Example: $1^{\text {st }}$ order RC Circuit with sinusoidal excitation

Suç-at $V_{s}\left(b=V_{m}(\cos (\omega t+\phi)\right.$
[Find expression for determining]

$$
(t \geqslant 0) \text { it ? }
$$

KL: $\quad i R+V_{l}=V_{s}$

$$
\Rightarrow i R+L \frac{d i}{d t}=V_{\delta}(D
$$

Sinusoidal Sources Create Too Much Algebra

$$
x_{P}(t)+\tau \frac{d x_{P}(t)}{d t}=F_{A} \sin (w t)+F_{B} \cos (w t)
$$

Guess a solution
Two terms to be general

$$
\begin{aligned}
x_{P}(t)= & A \sin (w t)+B \cos (w t) \\
& (A \sin (w t)+B \cos (w t))+\tau \frac{d(A \sin (w t)+B \cos (w t))}{d t}=F_{A} \sin (w t)+F_{B} \cos (w t) \\
& \left(A-\tau B-F_{A}\right) \sin (w t)+\left(B+\tau A-F_{B}\right) \cos (w t)=0
\end{aligned}
$$

Equation holds for all time

$$
\begin{aligned}
& \left(A-\tau B-F_{A}\right)=0 \\
& \left(B+\tau A-F_{B}\right)=0
\end{aligned}
$$ and time variations are independent and thus each time variation coefficient is individually zero

Phasors (vectors that rotate in the complex plane) are a clever alternative.

Complex Numbers (1)

	imaginar ^ axis	
y		$j=\sqrt{(-1)}$ real
	${ }^{x}$	axis

- x is the real part
- y is the imaginary part
- z is the magnitude
- θ is the phase

$$
x=z \cos \theta \quad y=z \sin \theta
$$

- Rectangular Coordinates

$$
Z=x+j y
$$

$Z=\sqrt{x^{2}+y^{2}} \quad \theta$
$\mathbf{Z}=z(\cos \theta+j \sin \theta)$

$$
\mathbf{Z}=z \angle \theta
$$

- Exponential Form:

$$
1=1 e^{j 0}=1 \angle 0^{\circ}
$$

$$
\mathbf{Z}=|\mathbf{Z}| e^{j \theta}=z e^{j \theta} \quad j=1 e^{j \frac{\pi}{2}}=1 \angle 90^{\circ}
$$

Complex Numbers (2)

Euler's Identities Bart's fav, idelits

$$
e^{i \pi}+1=0
$$

Exponential Form of a complex number

$$
\mathbf{Z}=|\mathbf{Z}| e^{j \theta}=z e^{j \theta}=z \angle \theta
$$

$$
\begin{aligned}
& \cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2} \\
& \sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j} \\
& e^{j \theta}=\cos \theta+j \sin \theta \\
& \text { In }+=5 \sin \\
& \frac{\sqrt{x} \frac{1}{x}+3}{x} \\
& \left|e^{j \theta}\right|=\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}=1 \stackrel{\cos \theta=\frac{x}{1}}{\Rightarrow x=\cos 2}
\end{aligned}
$$

Arithmetic With Complex Numbers

- To compute phasor voltages and currents, we need to be able to perform computation with complex numbers.
- Addition
- Subtraction
- Multiplication
- Division
- Later use multiplication by j ω to replace:
- Differentiation
- Integration

Addition

- Addition is most easily performed in rectangular coordinates:

$$
\begin{gathered}
\mathbf{A}=x+j y \\
\mathbf{B}=z+j w \\
\mathbf{A}+\mathbf{B}=(x+z)+j(y+w)
\end{gathered}
$$

Addition

Subtraction

- Subtraction is most easily performed in rectangular coordinates:

$$
\begin{aligned}
& \mathbf{A}=x+j y \\
& \mathbf{B}=z+j w
\end{aligned}
$$

$\mathbf{A}-\mathbf{B}=(x-z)+j(y-w)$

Subtraction

Multiplication

- Multiplication is most easily performed in polar coordinates:

$$
\begin{aligned}
& \mathbf{A}=A_{M} \angle \theta \\
& \mathbf{B}=B_{M} \angle \phi
\end{aligned}
$$

$$
\mathbf{A} \times \mathbf{B}=\left(A_{M} \times B_{M}\right) \angle(\theta+\phi)
$$

Multiplication

Division

- Division is most easily performed in polar coordinates:

$$
\begin{gathered}
\mathbf{A}=A_{M} \angle \theta \\
\mathbf{B}=B_{M} \angle \phi \\
\mathbf{A} / \mathbf{B}=\left(A_{M} / B_{M}\right) \angle(\theta-\phi)
\end{gathered}
$$

Division

Arithmetic Operations of Complex Numbers

- Add and Subtract: it is easiest to do this in rectangular format
- Add/subtract the real and imaginary parts separately
- Multiply and Divide: it is easiest to do this in exponential/polar format
- Multiply (divide) the magnitudes
- Add (subtract) the phases

$$
\begin{aligned}
& \mathbf{Z}_{1}=z_{1} e^{j \theta_{1}}=z_{1} \angle \theta_{1}=z_{1} \cos \theta_{1}+j z_{1} \sin \theta_{1} \\
& \mathbf{Z}_{2}=z_{2} e^{j \theta_{2}}=z_{2} \angle \theta_{2}=z_{2} \cos \theta_{2}+j z_{2} \sin \theta_{2} \\
& \mathbf{Z}_{1}+\mathbf{Z}_{2}=\left(z_{1} \cos \theta_{1}+z_{2} \cos \theta_{2}\right)+j\left(z_{1} \sin \theta_{1}+z_{2} \sin \theta_{2}\right) \\
& \mathbf{Z}_{1}-\mathbf{Z}_{2}=\left(z_{1} \cos \theta_{1}-z_{2} \cos \theta_{2}\right)+j\left(z_{1} \sin \theta_{1}-z_{2} \sin \theta_{2}\right) \\
& \mathbf{Z}_{1} \times \mathbf{Z}_{2}=\left(z_{1} \times z_{2}\right) e^{j\left(\theta_{1}+\theta_{2}\right)}=\left(z_{1} \times z_{2}\right) \angle\left(\theta_{1}+\theta_{2}\right) \\
& \mathbf{Z}_{1} / \mathbf{Z}_{2}=\left(z_{1} / z_{2}\right) e^{j\left(\theta_{1}-\theta_{2}\right)}=\left(z_{1} / z_{2}\right) \angle\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

Phasors

- Assuming a source voltage is a sinusoid timevarying function

$$
v(t)=V \cos (\omega t+\theta)]=V \operatorname{Re}\{\cos (u t+0) t+j \sin (\omega t \theta)\}
$$

- We can write:

$$
v(t)=V \cos (\omega t+\theta)=V \operatorname{Re}\left[e^{j(\omega t+\theta)}\right]=\operatorname{Re}\left[V e^{j(\omega t+\theta)}\right]
$$

Define Phasor as $V e^{j \theta}=V \angle \theta \Longleftarrow$ DO NoT pot

- Similarly, if the function is $V(t)=V \sin (\omega t+\theta)$ ines in

$$
v(t)=V \sin (\omega t+\theta)=V \cos \left(\omega t+\theta-\frac{\pi}{2}\right)=\operatorname{Re}\left[V e^{j\left(\omega t+\theta-\frac{\pi}{2}\right)}\right]
$$

$$
\begin{aligned}
\text { Phasor } \left.=V \angle\left(\theta-\frac{\pi}{2}\right) \quad \begin{array}{rl}
\text { MAin: } V R E\left[e^{j(\omega t+\theta)}\right] & =V \operatorname{Re}\left[e^{j \omega t} \cdot e^{j \theta}\right] \\
& =\operatorname{Re}\left(V e^{j \theta} \cdot e^{j \omega t}\right]
\end{array}\right]
\end{aligned}
$$

Phasor: Rotating Complex Vector

$$
v(t)=V \cos (\omega t+\phi)=\operatorname{Re}\left\{V e^{j \phi} e^{j \omega t}\right\}=\operatorname{Re}\left(\mathbf{V} e^{j \omega t}\right)
$$

The head start angle is ϕ.

Complex Exponentials

- We represent a real-valued sinusoid as the real part of a complex exponential after multiplying by $e^{j \omega t}$.
- Complex exponentials
- provide the link between time functions and phasors.
- Allow derivatives and integrals to be replaced by multiplying or dividing by j ω
- make solving for AC steady state simple algebra with complex numbers.
- Phasors allow us to express current-voltage relationships for inductors and capacitors much like we express the current-voltage relationship for a resistor.

I-V Relationship for a Capacitor

Suppose that $v(t)$ is a sinusoid:

Find $i(t)$.

$$
v(t)=\operatorname{Re}\left\{\overline{V e^{j(\omega t+\theta)}}\right\}=\operatorname{Re}\left[\begin{array}{c}
V_{1} \cdot \cos (\omega t+\theta) \\
+j V_{1}(\sin (t-\theta)
\end{array}\right]
$$

$$
=V \text {.o.lut }+\theta)
$$

Capacitor Impedance (1)

$$
\begin{aligned}
& \square \underset{i(t)}{ }+\quad d v(t) \quad v D=V_{(.0(u) t+o)} \\
& \begin{aligned}
& \overrightarrow{i(t)} \\
& \mathrm{C}+ \\
& v(t \\
&-
\end{aligned} \\
& i(t)=C \frac{d v(t)}{d t} \\
& \begin{array}{l}
v d=V_{(\cdot 0}(\omega t+v) \\
\left.E C \frac{d}{d t}[V \cos \mid \omega t+\theta)\right]
\end{array} \\
& =-c V \sin (\omega t+6) . \omega \\
& v(t)=V \cos (\omega t+\theta)=\frac{V}{2}\left[e^{j(\omega t+\theta)}+e^{-j(\omega t+\theta)}\right] \\
& i(t)=C \frac{d v(t)}{d t}=\frac{C V}{2} \frac{d}{d t}\left[e^{j(\omega t+\theta)}+e^{-j(\omega t+\theta)}\right]=\frac{C V}{2} j \omega\left[e^{j(\omega t+\theta)}-e^{-j(\omega t+\theta)}\right] \\
& =\frac{-\omega C V}{2 j}\left[e^{j(\omega t+\theta)}-e^{-j(\omega t+\theta)}\right]=-\omega C V \sin (\omega t+\theta)=\omega C V \cos \left(\omega t+\theta+\frac{\pi}{2}\right) \\
& Z_{c}=\frac{\mathbf{V}}{\mathbf{I}}=\frac{V \angle \theta}{I \angle\left(\theta+\frac{\pi}{2}\right)}=\frac{V}{\omega C V} \angle\left(\theta-\theta-\frac{\pi}{2}\right)=\left(\begin{array}{l}
\frac{1}{\omega C} \angle\left(-\frac{\pi}{2}\right)=-j \frac{1}{\omega C}=\frac{1}{j \omega C} \\
V \angle \theta
\end{array}\right.
\end{aligned}
$$

Capacitor Impedance (2)

$$
\begin{aligned}
& \text { Pointo to n.te: } \\
& \text { Phasor definition } \\
& v(t)=V \cos (\omega t+\theta)=\operatorname{Re}\left[V e^{j(\omega t+\theta)}\right] \Rightarrow \mathbf{V}=V \angle \theta \quad \text { Noter } \omega=2 \pi f \\
& i(t)=C \frac{d v(t)}{d t}=\operatorname{Re}\left[C V \frac{d e^{j(\omega t+\theta)}}{d t}\right]=\operatorname{Re}\left[j \omega C V e^{j(\omega t+\theta)}\right] \Rightarrow \mathbf{I}=I \angle \theta \\
& Z_{c}=\frac{\mathbf{V}}{\mathbf{I}}=\frac{V \angle \theta}{I \angle \theta}=\frac{V}{j \omega C V} \angle(\theta-\theta)=\frac{1}{j \omega C}
\end{aligned}
$$

Computing the Current

Note: The differentiation and integration operations become algebraic operations

$$
\frac{d}{d t} \Rightarrow j \omega
$$

$$
\int d t \Rightarrow \frac{1}{j \omega}
$$

$$
[\text { Sections } 9.1-60]
$$

Inductor Impedance

Example

$$
\begin{gathered}
i(t)=1 \mu \mathrm{~A} \cos \left(2 \pi 9.1510^{7} t+30^{\circ}\right) \\
L=1 \mu \mathrm{H}
\end{gathered}
$$

- What is I?
- What is V ?
- What is $v(t)$?

Phase

Voltage

$7 \cos (\omega t)=7 \angle 0^{\circ} \quad$ inductor current

Phasor Diagrams

- A phasor diagram is just a graph of several phasors on the complex plane (using real and imaginary axes).
- A phasor diagram helps to visualize the relationships between currents and voltages.
- Capacitor: I leads V by 90°
- Inductor: V leads I by 90°

Impedance

- AC steady-state analysis using phasors allows us to express the relationship between current and voltage using a formula that looks likes Ohm's law:

$$
V=I Z
$$

- \mathbf{Z} is called impedance.

Some Thoughts on Impedance

- Impedance depends on the frequency ω.
- Impedance is (often) a complex number.
- Impedance allows us to use the same solution techniques for AC steady state as we use for DC steady state.

