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EE100Su08 Lecture #11 (July 21st 2008)
• Bureaucratic Stuff

– Lecture videos should be up by tonight
– HW #2:  Pick up from office hours today, will leave them in lab.

REGRADE DEADLINE: Monday, July 28th 2008, 5:00 
pm PST, Bart’s office hours.

– HW #1:  Pick up from lab.
– Midterm #1:  Pick up from me in OH

REGRADE DEADLINE: Wednesday, July 23rd 2008, 5:00 pm PST.  Midterm:  drop off in hw box with a note 
attached on the first page explaining your request. 

• OUTLINE
– QUESTIONS?
– Op-amp MultiSim example
– Introduction and Motivation
– Arithmetic with Complex Numbers (Appendix B in your book)
– Phasors as notation for Sinusoids
– Complex impedances 
– Circuit analysis using complex impedances
– Derivative/Integration as multiplication/division
– Phasor Relationship for Circuit Elements
– Frequency Response and Bode plots

• Reading
– Chapter 9 from your book (skip 9.10, 9.11 (duh)), Appendix E* (skip second-order resonance 

bode plots)
– Chapter 1 from your reader (skip second-order resonance bode plots)
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Op-amps: Conclusion

• Questions?

• MultiSim Example
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Types of Circuit Excitation

Linear Time-
Invariant
Circuit

Steady-State Excitation

Linear Time-
Invariant
Circuit

OR

Linear Time-
Invariant
Circuit

Digital
Pulse
Source

Transient Excitation

Linear Time-
Invariant
Circuit

Sinusoidal (Single-
Frequency) Excitation

AC Steady-State

(DC Steady-State)
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Why is Single-Frequency Excitation Important?

• Some circuits are driven by a single-frequency 
sinusoidal source.  

• Some circuits are driven by sinusoidal sources 
whose frequency changes slowly over time.

• You can express any periodic electrical signal as 
a sum of single-frequency sinusoids – so you 
can analyze the response of the (linear, time-
invariant) circuit to each individual frequency 
component and then sum the responses to get 
the total response.

• This is known as Fourier Transform and is 
tremendously important to all kinds of engineering 
disciplines!
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Representing a Square Wave as a Sum of  Sinusoids

(a)Square wave with 1-second period.  (b)  Fundamental component 
(dotted) with 1-second period, third-harmonic (solid black) with1/3-second 
period, and their sum (blue).  (c)  Sum of first ten components. (d) 
Spectrum with 20 terms.
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Steady-State Sinusoidal Analysis
• Also known as AC steady-state
• Any steady state voltage or current in a linear circuit with 

a sinusoidal source is a sinusoid.
– This is a consequence of the nature of particular solutions for 

sinusoidal forcing functions.

• All AC steady state voltages and currents have the same 
frequency as the source.

• In order to find a steady state voltage or current, all we 
need to know is its magnitude and its phase relative to 
the source 
– We already know its frequency.

• Usually, an AC steady state voltage or current is given 
by the particular solution to a differential equation.
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Example: 1st order RC Circuit with sinusoidal excitation

R
+

-
CVs

t=0



Slide 8EE100 Summer 2008 Bharathwaj Muthuswamy

Sinusoidal Sources Create Too Much Algebra

)cos()sin()( wtBwtAtxP +=

)cos()sin()()( wtFwtF
dt

tdxtx BA
P

P +=+τ

)cos()sin())cos()sin(())cos()sin(( wtFwtF
dt

wtBwtAdwtBwtA BA +=
+

++ τ

Guess a solution

Equation holds for all time 
and time variations are 

independent and thus each 
time variation coefficient is 

individually zero

0)cos()()sin()( =−++−− wtFABwtFBA BA ττ

0)( =−+ BFAB τ
0)( =−− AFBA τ

12 +
+

=
τ

τ BA FFA
12 +

−
−=

τ
τ BA FFB

Two terms to be general

Phasors (vectors that rotate in the complex 
plane) are a clever alternative.
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Complex Numbers (1)
• x is the real part
• y is the imaginary part
• z is the magnitude
• θ is the phase

( 1)j = −

θ

z

x

y

real 
axis

imaginary 
axis

• Rectangular Coordinates 
Z = x + jy

• Polar Coordinates: 
Z = z ∠ θ

• Exponential Form: 

θcoszx = θsinzy =

22 yxz +=
x
y1tan−=θ

(cos sin )z jθ θ= +Z

j je zeθ θ= =Z Z

0

2

1 1 1 0

1 1 90

j

j

e

j e
π

= = ∠ °

= = ∠ °
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Complex Numbers (2)

2 2

cos
2

sin
2

cos sin

cos sin 1

j j

j j

j

j

e e

e e
j

e j

e

θ θ

θ θ

θ

θ

θ

θ

θ θ

θ θ

−

−

+
=

−
=

= +

= + =

j je ze zθ θ θ= = = ∠Z Z

Euler’s Identities

Exponential Form of a complex number
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Arithmetic With Complex Numbers
• To compute phasor voltages and currents, we 

need to be able to perform computation with 
complex numbers.
– Addition
– Subtraction
– Multiplication
– Division

• Later use multiplication by jω to replace:
– Differentiation
– Integration
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Addition

• Addition is most easily performed in 
rectangular coordinates:

A = x + jy
B = z + jw

A + B = (x + z) + j(y + w)
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Addition

Real 
Axis

Imaginary 
Axis

AB

A + B
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Subtraction

• Subtraction is most easily performed in 
rectangular coordinates:

A = x + jy
B = z + jw

A - B = (x - z) + j(y - w)
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Subtraction

Real 
Axis

Imaginary 
Axis

AB

A - B
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Multiplication

• Multiplication is most easily performed in 
polar coordinates:

A = AM ∠ θ
B = BM ∠ φ

A × B = (AM × BM) ∠ (θ + φ)
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Multiplication

Real 
Axis

Imaginary 
Axis

A

B
A × B
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Division

• Division is most easily performed in polar 
coordinates:

A = AM ∠ θ
B = BM ∠ φ

A / B = (AM / BM) ∠ (θ − φ)
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Division

Real 
Axis

Imaginary 
Axis

A

B

A / B
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Arithmetic Operations of Complex Numbers

• Add and Subtract: it is easiest to do this in rectangular 
format
– Add/subtract the real and imaginary parts separately

• Multiply and Divide: it is easiest to do this in 
exponential/polar format
– Multiply (divide) the magnitudes
– Add (subtract) the phases

1

2

1 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

2 1 1 2 2 1 1 2 2

2 1 1 2 2 1 1 2 2
( )

2 1 2 1 2 1 2

2 1 2

cos sin

cos sin
( cos cos ) ( sin sin )
( cos cos ) ( sin sin )

( ) ( ) ( )

/ ( / )

j

j

j

z e z z jz

z e z z jz
z z j z z
z z j z z

z z e z z

z z e

θ

θ

θ θ

θ θ θ

θ θ θ
θ θ θ θ
θ θ θ θ

θ θ+

= = ∠ = +

= = ∠ = +
+ = + + +
− = − + −

× = × = × ∠ +

=

1

1

1

1

1

Z

Z
Z Z
Z Z

Z Z

Z Z 1 2( )
1 2 1 2( / ) ( )j z zθ θ θ θ− = ∠ −
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Phasors
• Assuming a source voltage is a sinusoid time-

varying function
v(t) = V cos (ωt + θ)

• We can write:

• Similarly, if the function is v(t) = V sin (ωt + θ)

( ) ( )( ) cos( ) Re Rej t j t

j

v t V t V e Ve

Define Phasor as Ve V

ω θ ω θ

θ

ω θ

θ

+ +⎡ ⎤ ⎡ ⎤= + = =⎣ ⎦ ⎣ ⎦
= ∠

( )

( )
2

2

( ) sin( ) cos( ) Re
2

j t
v t V t V t Ve

Phasor V

πω θ

π
θ

πω θ ω θ
+ −

−

⎡ ⎤
= + = + − = ⎢ ⎥

⎣ ⎦

= ∠
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Phasor: Rotating Complex Vector

Real 
Axis

Imaginary 
Axis

V

{ } )( tjjwtj eeVetVtv ωφφω VReRe)cos()( ==+=

Rotates at uniform 
angular velocity ωt

cos(ωt+φ)

The head start angle is φ.
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Complex Exponentials
• We represent a real-valued sinusoid as the real 

part of a complex exponential after multiplying 
by      .

• Complex exponentials 
– provide the link between time functions and phasors.
– Allow derivatives and integrals to be replaced by 

multiplying or dividing by jω
– make solving for AC steady state simple algebra with 

complex numbers.
• Phasors allow us to express current-voltage 

relationships for inductors and capacitors much 
like we express the current-voltage relationship 
for a resistor.

tje ω
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I-V Relationship for a Capacitor

Suppose that v(t) is a sinusoid:
v(t) = Re{Vej(ωt+θ)}

Find i(t).

C v(t)

+

-

i(t)

dt
tdvCti )()( =
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Capacitor Impedance (1)

C v(t
)

+

-

i(t)
dt

tdvCti )()( =

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) cos( )
2

( )( )
2 2
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2 2

(

2
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j t j t j t j t
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Capacitor Impedance (2)

C v(t
)

+

-

i(t)
dt

tdvCti )()( =

( )

( )
( )

( ) cos( ) Re

( )( ) Re Re

1( )

j t

j t
j t

c

v t V t Ve V

dv t dei t C CV j CVe I
dt dt
V VZ
I j CV j C

ω θ

ω θ
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θ θ θ
θ ω ω

+

+
+

⇒

⇒

⎡ ⎤= + = = ∠⎣ ⎦
⎡ ⎤
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∠
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∠
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Phasor definition
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Example

v(t) = 120V cos(377t + 30°)
C = 2µF

• What is V?
• What is I?

• What is i(t)?
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Computing the Current

ωj
dt
d

⇒

Note: The differentiation and integration 
operations become algebraic operations

ωj
dt 1

⇒∫
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Inductor Impedance 

V = jωL I

L v(t)

+

-

i(t)

dt
tdiLtv )()( =
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Example

i(t) = 1µA cos(2π 9.15 107t + 30°)
L = 1µH

• What is I?
• What is V?

• What is v(t)?
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Phasor Diagrams

• A phasor diagram is just a graph of 
several phasors on the complex plane 
(using real and imaginary axes).

• A phasor diagram helps to visualize the 
relationships between currents and 
voltages.

• Capacitor: I leads V by 90o

• Inductor: V leads I by 90o
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Impedance

• AC steady-state analysis using phasors
allows us to express the relationship 
between current and voltage using a 
formula that looks likes Ohm’s law:

V = I Z
• Z is called impedance.
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Some Thoughts on Impedance

• Impedance depends on the frequency ω.
• Impedance is (often) a complex number.
• Impedance allows us to use the same 

solution techniques for AC steady state as 
we use for DC steady state.


