EE100Su08 Lecture \#14 (July 28 ${ }^{\text {th }}$ 2008)

- Outline
- MultiSim licenses: trying to get new licenses
- HW \#2: regrade deadline: Monday, 07/28, 5:00 pm PST.
- Midterm \#1 regrades: DONE!
- QUESTIONS?
- Bode plots
- Diodes: Introduction
- Reading
- Appendix E* (skip second-order resonance bode plots), Chapter 1 from your reader (skip second-order resonance bode plots)
- Chapter 2 from your reader (Diode Circuits)

Example Circuit

Example Circuit

Example Circuit

A Note on the form of transter fins.
(1) Ody respasible for: $\bar{H}=\frac{A}{\left(1+j \omega \alpha_{1}\right)} \cdot \frac{1}{\left(1+j \omega^{2} \sim\right)} \cdots \frac{1}{\left(1+j \omega_{n}\right)}$
(2) Not respanible for secind-rodu tranter fexs:

$$
\bar{H}=\frac{A}{\left(\omega^{2}+\alpha \omega+\sqrt{2}\right.} \quad \text { Romplex are }
$$

Bode Plot: Label as dB

For the siven tif
(onider: $H=\frac{A}{1+j \omega R_{2} c}=\frac{100}{(1+j \omega 100)}$
(I) $\bar{H}\left(0.1 \omega_{B}\right)=F\left(0.1 \frac{1}{100}\right)=\frac{100}{\left(1+j \cdot \frac{0.1}{100} \cdot 10^{0}\right)}=\frac{100}{1+\alpha_{i 0.1}}$
[necele: $\tau=R_{2} C, " \omega \triangleq \frac{1}{\tau}$]
≈ 100

$$
\begin{aligned}
\therefore 201 .\left|\bar{H}\left(0 \cdot 1 w_{B}\right)\right| & =20 \underbrace{\log _{10} 100}_{10} \\
& =20 \cdot 2^{\prime \prime}=40 d B
\end{aligned}
$$

$$
Y \bar{A}\left(01 \omega_{B}\right)=X 100=0^{\circ}
$$

Example: Phase plot

$$
\operatorname{Phase}\left\{\frac{100 \angle 0}{|1+j|}\right\}=\operatorname{Phase}\left\{\frac{100 \angle 0}{\sqrt{2} \angle 45}\right\}=0-45=-45
$$

Transfer Function

- Transfer function is a function of frequency
- Complex quantity
- Both magnitude and phase are function of frequency

$\mathbf{H}(f)=\frac{\mathbf{V}_{\text {out }}}{\mathbf{V}_{\text {in }}}=\frac{V_{\text {out }}}{V_{\text {in }}} \angle\left(\theta_{\text {out }}-\theta_{\text {in }}\right)$
$\mathbf{H}(\mathbf{f})=H(f) \angle \theta$

Filters

- Circuit designed to retain a certain frequency range and discard others
Low-pass: pass low frequencies and reject high frequencies
High-pass: pass high frequencies and reject low frequencies
Band-pass: pass some particular range of frequencies, reject other frequencies outside that band
Notch: reject a range of frequencies and pass all other frequencies

Common Filter Transfer Function vs. Freq (Magnitude Plots shown)

First-Order Lowpass Filter

$$
\begin{aligned}
& \mathbf{H}(\mathbf{f})=\frac{\mathbf{V}_{\mathbf{C}}}{\mathbf{V}}=\frac{1 /(j \omega C)}{1 /(j \omega C)+R}=\frac{1}{1+j \omega R C)}=\frac{1}{\sqrt{1+(\omega R C)^{2}}} \angle-\tan ^{-1}(\omega R C) \\
& \text { Let } \omega_{B}=\frac{1}{R C} \text { and } f_{B}=\frac{1}{2 \pi R C} \quad R C=100 \\
& \mathbf{H}(\mathbf{f})=H(f) \angle \theta
\end{aligned}
$$

$$
H(f)=\frac{1}{\sqrt{1+\left(\frac{f}{f_{B}}\right)^{2}}}, \theta=-\tan ^{-1}\left(\frac{f}{f_{B}}\right)
$$

$$
H\left(f_{B}\right)=\frac{1}{\sqrt{2}}=2^{-1 / 2}
$$

$$
20 \log _{10} \frac{H\left(f_{B}\right)}{H(0)}=20\left(-\frac{1}{2}\right) \log _{10} 2=-3 d B
$$

Quogation. Whet is the diftence hetwees the Bode $\beta^{l .5}: \bar{A}_{1}=\frac{100}{1+j \omega R_{2} c}, \quad \bar{H}_{22}=\frac{1}{1+j \omega R_{2 c}}$

$$
\left.\begin{array}{c}
R_{2} C=\frac{1}{100}=0.01 \\
{\left[w_{3}=\frac{1}{R_{2 C}}=\frac{M}{0.01}=100\right.}
\end{array}\right]
$$

$$
\begin{aligned}
& \bar{H}_{2}\left(0.1 \omega_{3}\right)=\frac{1}{1+j \frac{011}{R / C} \cdot R_{2} c} \\
&=\frac{1}{1+j 0.1} \approx 1 \\
& \text { l] } \quad i .20 l_{y}\left|\bar{H}_{2}\left(0.1 w_{35}\right)\right|=0
\end{aligned}
$$

[1.8.ste]

Quevetion. Whet is the difference between the Bode $\mathrm{p}^{(1,5):} \bar{A}_{1}=\frac{100}{1+j \omega R_{2 c}}, \bar{H}_{22}=\frac{1}{1+j \omega R_{2 c}}$

First-Order Highpass Filter

$$
\begin{aligned}
& \mathbf{H}(\mathbf{f})=\frac{\mathbf{V}_{\mathrm{R}}}{\mathbf{V}}=\frac{R}{1 /(j \omega C)+R}=\frac{j \omega R C}{1+j \omega R C}=\frac{(\omega R C)}{\sqrt{1+(\omega R C)^{2}}} \angle\left[\frac{\pi}{2}-\tan ^{-1}(\omega R C)\right] \\
& H(f)=\frac{\left(\frac{f}{f_{B}}\right)}{\sqrt{1+\left(\frac{f}{f_{B}}\right)^{2}}}, \theta=\frac{\pi}{2}-\tan ^{-1}\left(\frac{f}{f_{B}}\right) \\
& H\left(f_{B}\right)=\frac{1}{\sqrt{2}}=2^{-1 / 2} \\
& 20 \log _{10} \frac{H\left(f_{B}\right)}{H(0)}=20\left(-\frac{1}{2}\right) \log _{10} 2=-3 d B
\end{aligned}
$$

First-Order Lowpass Filter

$$
\begin{aligned}
& \mathbf{H}(\mathbf{f})=\frac{\mathbf{V}_{R}}{\mathbf{V}}=\frac{1}{\frac{j \omega L}{R}+1}=\frac{1}{\sqrt{1+\left(\frac{\omega L}{R}\right)^{2}}} \angle-\tan ^{-1}\left(\frac{\omega L}{R}\right) \\
& \text { Let } \omega_{B}=\frac{R}{L} \text { and } f_{B}=\frac{R}{2 \pi L} \\
& \mathbf{H}(\mathbf{f})=H(f) \angle \theta \\
& H(f)=\frac{1}{\sqrt{1+\left(\frac{f}{f_{B}}\right)^{2}}}, \theta=-\tan ^{-1}\left(\frac{f}{f_{B}}\right)
\end{aligned}
$$

First-Order Highpass Filter

$$
\begin{aligned}
& \mathbf{H}(\mathbf{f})=\frac{\mathbf{V}_{L}}{\mathbf{V}}=\frac{\frac{j \omega L}{R}}{\frac{j \omega L}{R}+1}=\frac{\frac{\omega L}{R}}{\sqrt{1+\left(\frac{\omega L}{R}\right)^{2}}} \angle\left[\frac{\pi}{2}-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right] \\
& \text { Let } \omega_{B}=\frac{R}{L} \text { and } f_{B}=\frac{R}{2 \pi L} \\
& \mathbf{H}(\mathbf{f})=H(f) \angle \theta \\
& H(f)=\frac{\left(\frac{f}{f_{B}}\right)}{\sqrt{1+\left(\frac{f}{f_{B}}\right)^{2}}}, \theta=\frac{\pi}{2}-\tan ^{-1}\left(\frac{f}{f_{B}}\right.
\end{aligned}
$$

First-Order Filter Circuits

Diodes

- OUTLINE
- Diode Model(s)
- Circuit Analysis with Diodes
- Diode Logic Gates
- Load Line Analysis
- Zener Diodes
- Diode Peak Detector
- Reading
- Reader: Chapter 2

Diode Physical Behavior and Equation

Qualitative I-V characteristics:

A non-ideality factor \mathbf{n} times $\mathbf{k T} / \mathbf{q}$ is often included.

Diode Ideal (Perfect Rectifier) Model

The equation $\mathrm{I}=\mathrm{I}_{0} \exp \left({ }^{\mathrm{qV}} / \mathrm{kT}^{-1}\right)$
is graphed below for $\mathrm{I}_{0}=10^{-15} \mathrm{~A}$

The characteristic is described as a "rectifier" - that is, a device that permits current to pass in only one direction. (The hydraulic analog is a "check value".) Hence the symbol:

I-V Characteristics

In forward bias (+ on p-side) we have almost unlimited flow (very low resistance). Qualitatively, the I-V characteristics must look like:

In reverse bias (+ on n -side) almost no current can flow. Qualitatively, the I-V characteristics must look like:

pn-Junction Reverse Breakdown

- As the reverse bias voltage increases, the peak electric field in the depletion region increases. When the electric field exceeds a critical value ($E_{\text {crit }} \cong 2 \times 10^{5} \mathrm{~V} / \mathrm{cm}$), the reverse current shows a dramatic increase:

The pn Junction I vs. V Equation

I-V characteristic of PN junctions

In EECS 105, 130, and other courses you will learn why the I vs. V relationship for PN junctions is of the form

$$
\mathrm{I}=\mathrm{I}_{0}\left(\mathrm{e}^{\mathrm{qV} / \mathrm{kT}}-1\right)
$$

where I_{0} is a constant proportional to junction area and depending on doping in P and N regions, $q=$ electronic charge $=1.6 \times 10^{-19}$, k is Boltzman constant, and T is absolute temperature.
$\mathrm{KT} / \mathrm{q}=0.026 \mathrm{~V}$ at $300^{\circ} \mathrm{K}$, a typical value for I_{0} is $10^{-12}-10^{-15} \mathrm{~A}$

We note that in forward bias, I increases exponentially and is in the $\mu \mathrm{A}-\mathrm{mA}$ range for voltages typically in the range of $0.6-0.8 \mathrm{~V}$. In reverse bias, the current is essentially zero.

Ideal Diode Model of PN Diode

Circuit symbol

I-V characteristic
reverse bias $\xrightarrow{\text { forward bias }}{ }^{\boldsymbol{I}_{\boldsymbol{D}}(\mathrm{A})}$

Switch model

- An ideal diode passes current only in one direction.
- An ideal diode has the following properties:
- when $\left.I_{D}>0, V_{D}=0\right\}$

Diode behaves like a switch:

- when $\left.\boldsymbol{V}_{\boldsymbol{D}}<0, \boldsymbol{I}_{\boldsymbol{D}}=0\right\} \begin{aligned} & \text { Diode behaves like a switch: } \\ & \text { • closed in forward bias mode }\end{aligned}$
- open in reverse bias mode

Diode Large-Signal Model (0.7 V Drop)

Improved "Large-Signal Diode" Model:

If we choose not to ignore the small forward-bias voltage drop of a diode, it is a very good approximation to regard the voltage drop in forward bias as a constant, about 0.7 V . the "Large signal model" results.

Large-Signal Diode Model

Circuit symbol

$\underline{I-V}$ characteristic
reverse bias $\xrightarrow{\text { forward bias }} \xrightarrow{\substack{\boldsymbol{I}_{\boldsymbol{D}}(\mathrm{A}) \\ \text { fon }}} \boldsymbol{V}_{\boldsymbol{D}}(\mathrm{V})$

Switch model

For a Si pn diode, $V_{\text {Don }} \cong 0.7 \mathrm{~V}$
RULE 1: When $I_{D}>0, V_{D}=V_{\text {Don }}$
Diode behaves like a voltage
RULE 2: When $\left.V_{D}<V_{D o n}, I_{D}=0\right\} \begin{aligned} & \text { Diode behaves like a votage } \\ & \text { source in series with a switch: }\end{aligned}$ - closed in forward bias mode

- open in reverse bias mode

