EE100Su08 Lecture \#15 (July 30 ${ }^{\text {th }}$ 2008)

- Outline
- MultiSim:
- Step 1: Download program from (257.5 MB):
http://ftp.ni.com/support/softlib/Circuit_Design_Suite/10.0/10.0.1/NI_CDS_10_0_1_Stu.exe
- Step 2: Use license key given out in class
- Project labs START NEXT WEEK (see updated schedule online tonight). For this week, make sure you finish Strain Gauge.
- QUESTIONS?
- Diodes: Wrap up
- Reading
- Chapter 2 from your reader (Diode Circuits)

Diode Physical Behavior and Equation

Qualitative I-V characteristics:

A non-ideality factor \mathbf{n} times $\mathbf{k T} / \mathbf{q}$ is often included.

Diode Ideal (Perfect Rectifier) Model

The equation $\mathrm{I}=\mathrm{I}_{0} \exp \left({ }^{\mathrm{qV}} / \mathrm{kT}^{-1}\right)$
is graphed below for $\mathrm{I}_{0}=10^{-15} \mathrm{~A}$

The characteristic is described as a "rectifier" - that is, a device that permits current to pass in only one direction. (The hydraulic analog is a "check value".) Hence the symbol:

I-V Characteristics

In forward bias (+ on p-side) we have almost unlimited flow (very low resistance). Qualitatively, the I-V characteristics must look like:

In reverse bias (+ on n -side) almost no current can flow. Qualitatively, the I-V characteristics must look like:

pn-Junction Reverse Breakdown

- As the reverse bias voltage increases, the peak electric field in the depletion region increases. When the electric field exceeds a critical value ($E_{\text {crit }} \cong 2 \times 10^{5} \mathrm{~V} / \mathrm{cm}$), the reverse current shows a dramatic increase:

The pn Junction I vs. V Equation

I-V characteristic of PN junctions

In EECS 105, 130, and other courses you will learn why the I vs. V relationship for PN junctions is of the form

$$
\mathrm{I}=\mathrm{I}_{0}\left(\mathrm{e}^{\mathrm{qV} / \mathrm{kT}}-1\right)
$$

where I_{0} is a constant proportional to junction area and depending on doping in P and N regions, $q=$ electronic charge $=1.6 \times 10^{-19}$, k is Boltzman constant, and T is absolute temperature.
$\mathrm{KT} / \mathrm{q}=0.026 \mathrm{~V}$ at $300^{\circ} \mathrm{K}$, a typical value for I_{0} is $10^{-12}-10^{-15} \mathrm{~A}$

We note that in forward bias, I increases exponentially and is in the $\mu \mathrm{A}-\mathrm{mA}$ range for voltages typically in the range of $0.6-0.8 \mathrm{~V}$. In reverse bias, the current is essentially zero.

Ideal Diode Model of PN Diode

Circuit symbol

I-V characteristic
reverse bias $\xrightarrow{\text { forward bias }}{ }^{\left(\boldsymbol{V}_{\boldsymbol{D}}(\mathrm{V})\right.}$

Switch model

- An ideal diode passes current only in one direction.
- An ideal diode has the following properties:
- when $\left.\boldsymbol{I}_{\boldsymbol{D}}>0, \boldsymbol{V}_{\boldsymbol{D}}=0\right\}$ Diode behaves like a switch:
- when $\left.\boldsymbol{V}_{\boldsymbol{D}}<0, \boldsymbol{I}_{\boldsymbol{D}}=0\right\}$. closed in forward bias mode
- open in reverse bias mode

Diode Large-Signal Model (0.7 V Drop)

Improved "Large-Signal Diode" Model:

If we choose not to ignore the small forward-bias voltage drop of a diode, it is a very good approximation to regard the voltage drop in forward bias as a constant, about 0.7 V . the "Large signal model" results.

Large-Signal Diode Model

Circuit symbol

I-V characteristic

Switch model

For a Si pn diode, $V_{D o n} \cong 0.7 \mathrm{~V}$
RULE 1: When $I_{D}>0, V_{D}=V_{\text {Don }}$ Diode behaves like a voltage
RULE 2: When $\left.\boldsymbol{V}_{\boldsymbol{D}}<\boldsymbol{V}_{\boldsymbol{D o n}}, \boldsymbol{I}_{\boldsymbol{D}}=0\right\}$ source in series with a switch: - closed in forward bias mode

- open in reverse bias mode

How to Analyze Circuits with Diodes

A diode has only two states:

- forward biased: $I_{D}>0, V_{D}=0 \mathrm{~V}$
-reverse biased: $I_{D}=0, V_{D}<0 \mathrm{~V}($ or 0.7 V$)$
Procedure:

1. Guess the state(s) of the diode(s)
2. Check to see if KCL and KVL are obeyed.
3. If KCL and KVL are not obeyed, refine your guess
4. Repeat steps $1-3$ until KCL and KVL are obeyed.

Example:

ple:

The circuit in the previous slide:

Rectifier Circuit

Full Wave Rectifier \& AC-DC converter

Full Wave Rectifier \& AC-DC converter

Full Wave Rectifier \& AC-DC converter

Another Example Circuit

Another Example Circuit
 D_{4} are ided, find $V_{A} 2 I$
Congidy: D_{4} on, all other off:

Peak Detector Circuit
Assume the ideal (perfect rectifier) model.

Assume C is insides dishaysel $v_{c}\left(t v_{c}(t)=o v\right.$ for $t \leq T_{1}$ Key Point: The capacitor charges due to one way current behavior of the diode.

Peak Detector Circuit

Assume the ideal (perfect rectifier) model.

Load Line Analysis Method

1. Graph the $I-V$ relationships for the non-linear element and for the rest of the circuit
2. The operating point of the circuit is found from the intersection of these two curves.

The I-V characteristic of all of the circuit except the non-linear element is called the load line

Load Line Analysis Method
Nonce: (1) we are using the non-ided diode moll (sishervenite the liner subcircuit across the diode How does it wake: kun. $V_{m}=V_{p}+Y$ (bowlines work bet t

Zener Diode

A Zener diode is designed to operate in the breakdown mode. They are usually used to produce constant output voltages.

Example: Assuming reverse breakdown voltage of zener is -2.5 V and the on-voltage of LED1 is 1.66 V , find the current throuah the LED1 (of course, make sure the LED1 is actually on)!

Zener Diode

$$
\begin{aligned}
& I_{1}=\frac{12-2.5 \mathrm{~V}}{1 \mathrm{~K}}=9.5 \mathrm{~mA} \\
& I_{2}=\frac{2.5-1.6}{1 / \mathrm{k}}=0.9 \mathrm{~mA}
\end{aligned}
$$

Example: Assuming reverse breakdown voltage of zener is -2.5 V and the op-voltage of LED1 is 1.66 V , find the current through the LED1 (of course, make sure the LED1 is actually on)!

