EE100Su08 Lecture #17 (August 4th 2008)

- OUTLINE
 - HW #3s-#6s: Pick up from lab, regrades: talk to Bart (HW #4s are in lab as well)
 - QUESTIONS?
 - Lecture schedule:
 - Today: wrap up transistors
 - Wednesday (08/06): Review
 - Friday (08/08), Monday (08/11): NO LECTURE
 - Wednesday (08/13): TA review
 - Friday (08/15): Final exam
 - Transistor introduction (MOSFETs)
 - Simple transistor circuit: resistive inverter
 - Transistor logic circuits
- Reading
 - Reader: Chapter 4 and 5 (concentrate on logic applications).

MOSFET

Note:
(1)
$$i_{0} = \begin{cases} 0 & if V_{us} \angle V_{T} - 3 c_{0}bdf & fricket \\ k (2 (v_{u_{1}} - v_{T}) + v_{0S} - v_{0}^{2}) & v_{us} \ge v_{us} \angle V_{us} \angle v_{u_{T}} - v_{T} \\ k (2 (v_{u_{1}} - v_{T}) + v_{0S} - v_{0}^{2}) & v_{us} \ge v_{us} \ge V_{us} - v_{T} \\ k (v_{us} - v_{T})^{2} & V_{us} \ge v_{us} \ge V_{us} - v_{T} \\ schendron \end{cases}$$
(2) As you (witch from tricele -3 (advalon),
 $k (2 (v_{u_{1}} - v_{T}) \vee v_{0T} - v_{0s}^{2}) = k (2 (v_{u_{1}} - v_{T})^{2}) \\ k_{us} - v_{T} = v_{ss} - (k_{u_{1}} - v_{T})^{2}) \\ (v_{us} - v_{T} = v_{ss} - (k_{u_{1}} - v_{T})^{2}) \\ k_{us} = \delta v_{us} \frac{1}{v_{u_{1}}} = k (v_{u_{1}} - v_{t_{1}})^{2} \\ k_{u_{1}} = \delta v_{u_{1}} \\ k_{u_{1}} = \delta v_{u_{1}} \end{bmatrix}$
(Betallow summer 2008 Slide 4 Bharathway Muthuswamy

remoister Circuits. (1) what is Uns? What mode is the branisher spending in? $7 - y_x - 1 - y_{05} - 2 = 0$ we can find Yas, we know VT =) we can try 2 find the pios trive toanjigter mode of operation. $V_{45} = V_{4} - v_{5} = 5 - (a_{1})(1 - 4)$ **EE100 Summer 2008** Slide 5 Bharathwaj Muthuswamy

bransister Circuits. Gei (1) what is Mas? (25 What mode is the fransister spending in? n V $7 - y_x - 1 - y_{05} - 2 = 0$ D=lmA, Assume transition is Schretel Finel =) $i_0 = k (v_{GT} - v_T)$ K- 500 mA $= (2.3)^2, 500 \text{ wA} = (3-0.7)^2$ **EE100 Summer 2008** Slide 6 Bharathwaj Muthuswamy

_ Gruits cryithr (1) what is V_{DS} ? 5 what mode is the fragister spendig in? 2 rostru =) (2) Transistor is in tor. [Recame i orat \$ is curet .VOS-Var 175 Sos MA しらく mA ~ Slide 7 EE100 Summer 2008 Bharathwaj Muthuswamy

Interesting circuit : (UPPENT JURCES Mide of "nordini. 34 K JFF1 $\left(\right)$ $V_{DC} < V_{Cr} - V_{r} >$ 1 wa/ 12 0.7 V =) Schrohn Vos = Vas IL 34 EE100 Summer 2008 Slide 8 Bharathwaj Muthuswamy

NMOS Resistor Pull-Up

Disadvantages of NMOS Logic Gates

- Large values of R_D are required in order to
 - achieve a low value of V_{OL}
 - keep power consumption low
 - → Large resistors are needed, but these take up a lot of space.
 - One solution is to replace the resistor with an NMOSFET that is always on.

Features of CMOS Digital Circuits

- The output is always connected to V_{DD} or GND in steady state
 - \rightarrow Full logic swing; large noise margins
 - → Logic levels are not dependent upon the relative sizes of the devices ("ratioless")
- There is no direct path between V_{DD} and GND in steady state

 \rightarrow no static power dissipation

NMOS NAND Gate

• Output is low only if both inputs are high

NMOS NOR Gate

• Output is low if either input is high

N-Channel MOSFET Operation

An NMOSFET is a closed switch when the input is high

NMOSFETs pass a "strong" **0** but a "weak" **1**

P-Channel MOSFET Operation

A PMOSFET is a closed switch when the input is low

PMOSFETs pass a "strong" 1 but a "weak" 0

Pull-Down and Pull-Up Devices

- In CMOS logic gates, NMOSFETs are used to connect the output to GND, whereas PMOSFETs are used to connect the output to V_{DD}.
 - An NMOSFET functions as a *pull-down device* when it is turned on (gate voltage = V_{DD})
 - A PMOSFET functions as a *pull-up device* when it is turned on (gate voltage = *GND*)

