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Lecture Outline

� Review:  MOS Capacitors Regions

� MOS Capacitors (3.8 − 3.9)
– CV Curve

– Threshold Voltage

� MOS Transistors (4.1 − 4.3):
– Overview

– Cross-section and layout 

– I-V Curve 
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MOS Capacitor

� MOS = Metal Oxide Silicon
� Sandwich of conductors separated by an insulator 
� “Metal” is more commonly a heavily doped polysilicon

layer n+ or p+ layer
� NMOS � p-type substrate, PMOS � n-type substrate

Oxide (SiO2)

Body (p-type substrate)

Gate (n+ poly)

011.7sε ε=

03.9oxε ε=

Very Thin!

~ 1nmoxt
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Accumulation:  VGB < VFB

� Essentially a parallel plate capacitor

� Capacitance is determined by oxide thickness:

( )G ox GB FBQ C V V= −

Body (p-type substrate)

−+GB FBV V<
++++++++++++++++++
−−−−−−−−−−−−−−−−−−

B GQ Q=

( )xρ

( )xφ
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Depletion:  VFB<VGB < VT

� Positive charge on gate terminates on negative charges in 
depletion region

� Potential drop across the oxide and depletion region

� Charge has a square-root dependence on applied bias

Body (p-type substrate)

+−GB FBV V> + +  +  +  +  +  +  +  + +

( )B a d GBQ qN X V= −

− − − − − − − − −
− − − − − − − −

( )G GB BQ V Q= −
oxt

( )xρ

( )xφ
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Inversion

� The surface potential increases to a point where the electron 
density at the surface equals the background ion density

� At this point, the depletion region stops growing and the 
extra charge is provided by the inversion charge at surface

sq

kT
s i an n e N

φ

= =

Body (p-type substrate)

+ +  +  +  +  +  +  +  + ++−GB TV V=
− − − − − − − − −
− − − − − − − −

sφ
oxt depx

( )xρ

( )xφ
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Threshold Voltage

� The threshold voltage is defined as the gate-body voltage 
that causes the surface to change from p-type to n-type

� For this condition, the surface potential has to equal the 
negative of the p-type potential

� Apply KCL around loop:
Gate (n+ poly)

GS FB ox BSV V V V= + +

1
2 2 ( 2 )Tn FB p s a p

ox

V V q N
C

φ ε φ= − + −

oxV

+

−BSV

+

−

+−GB TV V=

− − − − − −
2s BS pVφ φ= = −

s
ox ox ox ox s

ox

V E t t E
ε
ε

= =

2 ( 2 )2a dep a pa s
s s
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Inversion Stops Depletion

� A simple approximation is to assume that once 
inversion happens, the depletion region stops 
growing

� This is a good assumption since the inversion 
charge is an exponential function of the surface 
potential

� Under this condition:

,max( )G Tn BQ V Q≈ −

,max( ) ( )G GB ox GB Tn BQ V C V V Q= − −
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Q-V Curve for MOS Capacitor

� In accumulation, the charge is simply proportional 
to the applies gate-body bias

� In inversion, the same is true

� In depletion, the charge grows slower since the 
voltage is applied over a depletion region

GQ

( )GBV V
TnVFBV

inv
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depletion

,maxBQ−

( )N GBQ V−
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Numerical Example

� MOS Capacitor with p-type substrate:

� Calculate flat-band:

� Calculate threshold voltage:

20nmoxt = 16 35 10 cmaN −= ×

( ) (550 ( 402)) 0.95VFB pn
V φ φ+= − − = − − − = −

1
2 2 ( 2 )Tn FB p s a p

ox

V V q N
C

φ ε φ= − + −

13

-6

3.45 10 F/cm

2 10 cm
ox

ox
ox

C
t

ε −×= =
×

19 12 162 1.6 10 1.04 10 5 10 2 0.4
.95 2( 0.4) 0.52VTn

ox

V
C

− −× × × × × × × ×= − − − + =
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Num Example: Electric Field in Oxide

� Apply a gate-to-body voltage:

� Device is in accumulation

� The entire voltage drop is across the oxide:

� The charge in the substrate (body) consist of holes:

2.5GB FBV V= − <

5
6

2.5 0.55 ( 0.4) V
8 10

2 10 cm
GB pox n

ox
ox ox

VV
E

t t

φ φ+

−

+ − − + − −= = = = − ×
×

7 2( ) 2.67 10 C/cmB ox GB FBQ C V V −= − − = ×
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Numerical Example:  Depletion Region

� In inversion, what’s the depletion region width and 
charge?

,max 2 0.8VB s p p p pV φ φ φ φ φ= − = − − = − =

2
,max ,max

1

2
a

B d
s

qN
V X

ε
 

=  
 

,max
,max

2
144nms B

d
a

V
X

qN

ε
= =

7 2
,max ,max 1.15 10 C/cmB a dQ qN X −= − = − ×
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MOS CV Curve

� Small-signal capacitance is slope of Q-V curve

� Capacitance is linear in accumulation and inversion

� Capacitance is depletion region is smallest

� Capacitance is non-linear in depletion

GQ

( )GBV V
TnVFBV

,maxBQ−

( )N GBQ V−

C

GBV

oxC oxC

TnVFBV
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C-V Curve Equivalent Circuits

� In accumulation mode the capacitance is just due to the 
voltage drop across tox

� In inversion the incremental charge comes from the 
inversion layer (depletion region stops growing).  

� In depletion region, the voltage drop is across the oxide and 
the depletion region

oxC oxC
oxC

depC

s
dep

dep

C
x

ε=
11

dep ox ox ox
tot

dep s oxdep ox

ox depox

C C C C
C

C tC C
xC

ε
ε

= = =
+ ++
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MOSFET Cross Section

� Add two junctions around MOS capacitor

� The regions forms PN junctions with substrate

� MOSFET is a four terminal device

� The body is usually grounded (or at a DC potential)

� For ICs, the body contact is at surface

p-type substrate

n+ n+

source drain
diffusion regions

L

gate

body

p+
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MOSFET Layout

� Planar process:  complete structure can be specified 
by a 2D layout

� Design engineer can control the transistor width W 
and L

� Process engineer controls tox, Na, xj, etc.

p-type substrate

n+ n+

S D
G

B

p+

B S D

L

L

W

contact
poly gate

jx

G
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PMOS & NMOS

� A MOSFET by any other name is still a MOSFET:
– NMOS, PMOS, nMOS, pMOS
– NFET, PFET
– IGFET
– Other flavors:  JFET, MESFET

� CMOS technology:  The ability to fabricated 
NMOS and PMOS devices simultaneously

p-type substrate

n+ n+

S DB

p+
L jx

n-type substrate

p+ p+

S DB

n+
L jx

NMOS PMOS

G G
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CMOS

� Complementary MOS:  Both P and N type devices
� Create a n-type body in a p-type substrate through 

compensation.  This new region is called a “well”.
� To isolate the PMOS from the NMOS, the well must be 

reverse biased (pn junction)

n+ n+

S DB

p+
L jx

n-type well

p+ p+

S DB

n+
L jx

NMOS PMOS

G G

p-type substrate
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Circuit Symbols

� The symbols with the arrows are typically used in 
analog applications

� The body contact is often not shown 

� The source/drain can switch depending on how the 
device is biased (the device has inherent symmetry)
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Observed Behavior:  ID-VGS

� Current zero for negative gate voltage
� Current in transistor is very low until the gate 

voltage crosses the threshold voltage of device 
(same threshold voltage as MOS capacitor)

� Current increases rapidly at first and then it finally 
reaches a point where it simply increases linearly

GSV

DSI

TV

GSV

DSI
DSV
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Observed Behavior:  ID-VDS

� For low values of drain voltage, the device is like a resistor

� As the voltage is increases, the resistance behaves non-linearly 
and the rate of increase of current slows

� Eventually the current stops growing and remains essentially 
constant (current source)

DSV

/DSI k

“constant” current

resistor region

non-linear resistor region

2GSV V=

3GSV V=

4GSV V=

GSV

DSI
DSV
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“Linear” Region Current

� If the gate is biased above threshold, the surface is 
inverted

� This inverted region forms a channel that connects 
the drain and gate

� If a drain voltage is applied positive, electrons will 
flow from source to drain

p-type

n+ n+p+

Inversion layer
“channel”

GS TnV V>

100mVDSV ≈
G

D
S

NMOS

x

y
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MOSFET “Linear” Region

� The current in this channel is given by

� The charge proportional to the voltage applied 
across the oxide over threshold

� If the channel is uniform density, only drift current 
flows

DS y NI Wv Q= −

( )N ox GS TnQ C V V= −

( )DS y ox GS TnI Wv C V V= − −

y n yv Eµ= − DS
y

V
E

L
= −

GS TnV V>( )DS n ox GS Tn DS

W
I C V V V

L
µ= − 100mVDSV ≈
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MOSFET:  Variable Resistor

� Notice that in the linear region, the current is 
proportional to the voltage

� Can define a voltage-dependent resistor

� This is a nice variable resistor, electronically 
tunable!

( )DS n ox GS Tn DS

W
I C V V V

L
µ= −

1
( )

( )
DS

eq GS
DS n ox GS Tn

V L L
R R V

I C V V W Wµ
 = = = −  

�


