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Lecture Outline

� PN Junctions Thermal Equilibrium

� PN Junctions with Reverse Bias
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PN Junctions:  Overview
� The most important device is a junction 

between a p-type region and an n-type region

� When the junction is first formed, due to the 
concentration gradient, mobile charges 
transfer near junction 

� Electrons leave n-type region and holes leave 
p-type region

� These mobile carriers become minority 
carriers in new region (can’t penetrate far due 
to recombination)

� Due to charge transfer, a voltage difference 
occurs between regions

� This creates a field at the junction that causes 
drift currents to oppose the diffusion current

� In thermal equilibrium, drift current and 
diffusion must balance
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PN Junction Currents

� Consider the PN junction in thermal equilibrium

� Again, the currents have to be zero, so we have
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PN Junction Fields
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Total Charge in Transition Region

� To solve for the electric fields, we need to write 
down the charge density in the transition region:

� In the p-side of the junction, there are very few 
electrons and only acceptors:

� Since the hole concentration is decreasing on the p-
side, the net charge is negative:
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Charge on N-Side

� Analogous to the p-side, the charge on the n-side is 
given by:

� The net charge here is positive since:
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“Exact” Solution for Fields

� Given the above approximations, we now have an 
expression for the charge density

� We also have the following result from 
electrostatics

� Notice that the potential appears on both sides of 
the equation… difficult problem to solve

� A much simpler way to solve the problem…
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Depletion Approximation

� Let’s assume that the transition region is 
completely depleted of free carriers (only immobile 
dopants exist)

� Then the charge density is given by

� The solution for electric field is now easy
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Depletion Approximation (2)

� Since charge density is a constant

� If we start from the n-side we get the following 
result
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Plot of Fields In Depletion Region

� E-Field zero outside of depletion region
� Note the asymmetrical depletion widths
� Which region has higher doping?
� Slope of E-Field larger in n-region.  Why?
� Peak E-Field at junction.  Why continuous?
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Continuity of E-Field Across Junction

� Recall that E-Field diverges on charge.  For a sheet 
charge at the interface, the E-field could be 
discontinuous 

� In our case, the depletion region is only populated 
by a background density of fixed charges so the E-
Field is continuous

� What does this imply?

� Total fixed charge in n-region equals fixed charge 
in p-region!  Somewhat obvious result.
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Potential Across Junction

� From our earlier calculation we know that the 
potential in the n-region is higher than p-region

� The potential has to smoothly transition form high 
to low in crossing the junction

� Physically, the potential difference is due to the 
charge transfer that occurs due to the concentration 
gradient

� Let’s integrate the field to get the potential:
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Potential Across Junction

� We arrive at potential on p-side (parabolic)

� Do integral on n-side

� Potential must be continuous at interface (field 
finite at interface)
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Solve for Depletion Lengths

� We have two equations and two unknowns.  We are 
finally in a position to solve for the depletion 
depths
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Sanity Check

� Does the above equation make sense?
� Let’s say we dope one side very highly.  Then 

physically we expect the depletion region width for 
the heavily doped side to approach zero:

� Entire depletion width dropped across p-region
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Total Depletion Width

� The sum of the depletion widths is the “space 
charge region”

� This region is essentially depleted of all mobile 
charge

� Due to high electric field, carriers move across 
region at velocity saturated speed 
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Have we invented a battery?

� Can we harness the PN junction and turn it into a 
battery?

� Numerical example:
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Contact Potential

� The contact between a PN junction creates a 
potential difference

� Likewise, the contact between two dissimilar 
metals creates a potential difference (proportional 
to the difference between the work functions)

� When a metal semiconductor junction is formed, a 
contact potential forms as well

� If we short a PN junction, the sum of the voltages 
around the loop must be zero:
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PN Junction Capacitor

� Under thermal equilibrium, the PN junction does 
not draw any (much) current

� But notice that a PN junction stores charge in the 
space charge region (transition region)

� Since the device is storing charge, it’s acting like a 
capacitor

� Positive charge is stored in the n-region, and 
negative charge is in the p-region:
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Reverse Biased PN Junction

� What happens if we “reverse-bias” the PN 
junction?

� Since no current is flowing, the entire reverse 
biased potential is dropped across the transition 
region

� To accommodate the extra potential, the charge in 
these regions must increase

� If no current is flowing, the only way for the charge 
to increase is to grow (shrink) the depletion regions
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Voltage Dependence of Depletion Width

� Can redo the math but in the end we realize that the 
equations are the same except we replace the built-
in potential with the effective reverse bias:
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Charge Versus Bias

� As we increase the reverse bias, the depletion 
region grows to accommodate more charge

� Charge is not a linear function of voltage

� This is a non-linear capacitor

� We can define a small signal capacitance for small 
signals by breaking up the charge into two terms
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Derivation of Small Signal Capacitance

� From last lecture we found

� Notice that
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Physical Interpretation of Depletion Cap

� Notice that the expression on the right-hand-side is 
just the depletion width in thermal equilibrium

� This looks like a parallel plate capacitor!
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A Variable Capacitor (Varactor)

� Capacitance varies versus bias:

� Application:  Radio Tuner
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P-type Si Substrate

N-type Diffusion Region
Oxide

“Diffusion” Resistor

� Resistor is capacitively isolation from substrate 
– Must Reverse Bias PN Junction!


