1. Carrier Concentration

a) Intrinsic Semiconductors

- Pure single-crystal material

For an intrinsic semiconductor, the concentration of electrons in the conduction band is equal to the concentration of holes in the valence band.

We may denote, n_i : intrinsic electron concentration p_i : intrinsic hole concentration

However,

 $n_i = p_i$

Simply,

 n_i : intrinsic carrier concentration, which refers to either the intrinsic electron or hole concentration

Commonly accepted values of n_i at $T = 300^{\circ}$ K

Silicon	$1.5 \times 10^{10} \text{ cm}^{-3}$
Gallium arsenide	$1.8 \times 10^6 \text{ cm}^{-3}$
Germanium	$2.4 \times 10^{13} \text{ cm}^{-3}$

b) Extrinsic Semiconductors

- Doped material

The doping process can greatly alter the electrical characteristics of the semiconductor. This doped semiconductor is called an extrinsic material.

n-Type Semiconductors (negatively charged electron by adding donor) p-Type Semiconductors (positively charged hole by adding acceptor)

c) Mass-Action Law

 n_0 : thermal-equilibrium concentration of electrons p_0 : thermal-equilibrium concentration of holes

 $n_0 p_0 = n_i^2 = f(T)$ (function of temperature)

The product of n_0 and p_o is always a constant for a given semiconductor material at a given temperature.

d) Equilibrium Electron and Hole Concentrations

Let,

 n_0 : thermal-equilibrium concentration of electrons

 p_0 : thermal-equilibrium concentration of holes

 n_d : concentration of electrons in the donor energy state

 p_a : concentration of holes in the acceptor energy state

 N_d : concentration of donor atoms

 N_a : concentration of acceptor atoms

 N_d^+ : concentration of positively charged donors (ionized donors)

 N_a : concentration of negatively charged acceptors (ionized acceptors)

By definition, $N_d^+ = N_d - n_d$

 $Na^{-} = N_a - p_a$

by the charge neutrality condition, $n_0 + Na^- = p_0 + N_d^+$

or $n_0 + (N_a - p_a) = p_0 + (N_d - n_d)$

assume complete ionization, $p_a = n_d = 0$

then, eq # becomes, $n_0 + N_a = p_0 + N_d$

by eq # and the Mass-Action law $(n_0p_0 = n_i^2)$ $n_0 = \frac{1}{2} \{ (N_d - N_a) + ((N_d - N_a)^2 + 4n_i^2)^{1/2} \}, \text{ where } N_d > N_a \text{ (n-type)}$ $p_0 = \frac{1}{2} \{ (N_a - N_d) + ((N_a - N_d)^2 + 4n_i^2)^{1/2} \}, \text{ where } N_a > N_d \text{ (p-type)}$ $n_0 = p_0 = n_i, \text{ where } N_a = N_d \text{ (intrinsic)}$

If $N_d - N_a >> n_i$, then $n_0 = N_d - N_a$, $p_0 = n_i^2 / (N_d - N_a)$

If $N_a - N_d >> n_i$, then $p_0 = N_a - N_d$, $n_0 = n_i^2 / (N_a - N_d)$

Example 1)

Determine the thermal equilibrium electron and hole concentrations for a given doping concentration.

Consider an n-type silicon semiconductor at $T = 300^{\circ}$ K in which $N_d = 10^{16}$ cm⁻³ and $N_a = 0$. The intrinsic carrier concentration is assumed to be $n_i = 1.5 \times 10^{10}$ cm⁻³.

- Solution

The majority carrier electron concentration is $n_o = \frac{1}{2} \{ (N_d - N_a) + ((N_d - N_a)^2 + 4n_i^2)^{1/2} \} \approx 10^{16} \text{ cm}^{-3}$ The minority carrier hole concentration is $p_0 = n_i^2 / n_0 = (1.5 \text{ x } 10^{10})^2 / 10^{16} = 2.25 \text{ x } 10^4 \text{ cm}^{-3}$

- Comment

 $N_d >> n_i$, so that the thermal-equilibrium majority carrier electron concentration is essentially equal to the donor impurity concentration. The thermal-equilibrium majority and minority carrier concentrations can differ by many orders of magnitude.

Example 2)

Determine the thermal equilibrium electron and hole concentrations for a given doping concentration.

Consider an germanium sample at $T = 300^{\circ}$ K in which $N_d = 5 \ge 10^{13}$ cm⁻³ and $N_a = 0$. Assume that $n_i = 2.4 \ge 10^{13}$ cm⁻³.

- Solution

The majority carrier electron concentration is $n_o = \frac{1}{2} \{ (5 \ge 10^{13}) + ((5 \ge 10^{13})^2 + 4(2.4 \ge 10^{13})^2)^{1/2} \} = 5.97 \ge 10^{12} \text{ cm}^{-3}$ The minority carrier hole concentration is $p_0 = n_i^2 / n_0 = (2.4 \ge 10^{13})^2 / (5.97 \ge 10^{12}) = 9.65 \ge 10^{12} \text{ cm}^{-3}$

- Comment

If the donor impurity concentration is not too different in magnitude from the intrinsic carrier concentration, the thermal-equilibrium majority carrier electron concentration is influenced by the intrinsic concentration.

Example 3)

Determine the thermal equilibrium electron and hole concentrations in a compensated ntype semiconductor.

Consider a silicon semiconductor at $T = 300^{\circ}$ K in which $N_d = 10^{16}$ cm⁻³ and $N_a = 3 \times 10^{15}$ cm⁻³. Assume that $n_i = 1.5 \times 10^{10}$ cm⁻³.

- Solution

The majority carrier electron concentration is $n_o = \frac{1}{2} \{ (10^{16} - 3 \times 10^{15}) + ((10^{16} - 3 \times 10^{15})^2 + 4(1.5 \times 10^{10})^2)^{1/2} \} \approx 7 \times 10^{15} \text{ cm}^{-3}$ The minority carrier hole concentration is $p_0 = n_i^2 / n_0 = (1.5 \times 10^{10})^2 / (7 \times 10^{15}) = 3.21 \times 10^4 \text{ cm}^{-3}$

- Comment

If we assume complete ionization and if $N_d - N_a \gg n_i$, the the majority carrier electron concentration is, to a very good approximation, just the difference between the donor and acceptor concentrations.

2. Carrier Transport

The net flow of the electrons and holes in a semiconductor will generate currents. The process by which these charged particles move is called transport. The two basic transport mechanisms in a semiconductor crystal:

- Drift: the movement of charge due to electric fields

- Diffusion: the flow of charge due to density gradients

a) Carrier Drift - Drift Current Density

Let, J^{dr} : drift current density ρ : positive volume charge density v_d : average drift velocity

then,

 $J^{dr} = \rho v_d$

 $J_p^{dr} = (qp)v_{dp} \text{ (hole)}$ $J_n^{dr} = (-qn)v_{dn} \text{ (electron)}$ $J^{dr} = J_p^{dr} + J_n^{dr} = (qp)v_{dp} + (-qn) v_{dn}$

for low electric field, $v_{dp} = \mu_p E (\mu_p : \text{proportionality factor, hole mobility})$ $v_{dn} = -\mu_n E (\mu_n : \text{proportionality factor, electron mobility})$

thus, $J^{dr} = J_p^{dr} + J_n^{dr} = q(p\mu_p + n\mu_n)E$

Example 1)

Calculate the drift current density in a semiconductor for a given electric field. Consider a germanium sample at $T = 300^{\circ}$ K with doping concentration of $N_d = 0$ and $N_a = 10^{16}$ cm⁻³. Assume complete ionization and electron and hole mobilities are 3900 cm²/V·sec and 1900 cm²/V·sec. The applied electric field is E = 50 V/cm.

- Solution

Since $N_a > N_d$, the semiconductor is p-type and the majority carrier hole concentration,

 $p = \frac{1}{2} \{ (N_a - N_d) + ((N_a - N_d)^2 + 4n_i^2)^{1/2} \} \approx 10^{16} \text{ cm}^{-3}$ The minority carrier electron concentration is $n = n_i^2 / p = (2.4 \times 10^{13})^2 / 10^{16} = 5.76 \times 10^{10} \text{ cm}^{-3}$ For this extrinsic p-type semiconductor, the drift current ^{density} is $J^{dr} = J_p^{dr} + J_n^{dr} = q(p\mu_p + n\mu_n) E \approx qN_a\mu_p E$ Then $J^{dr} = (1.6 \times 10^{-19})(1900)(10^{16})(50) = 152 \text{ A/cm}^2$

- Comment

Significant drift current densities can be obtained in a semiconductor applying relatively small electric fields. The drift current will be due primarily to the majority carrier in an extrinsic semiconductor.