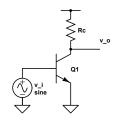
EE105 – Fall 2014 Microelectronic Devices and Circuits

Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH)

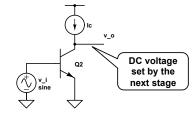


Lecture20-Current Mirrors

1

Common-Emitter Amplifierswith Ideal Current Source Load

Voltage gain:


$$A_V = -g_m(R_C \parallel r_o) = -g_m R_C$$

$$A_V = -\frac{I_C}{V_T} R_C = -\frac{V_{Rc}}{V_T}$$

Typical values:

$$I_C \sim 1 mA$$
 $R_C \sim 5 k\Omega$

$$A_{V} \sim -200$$

Voltage gain:

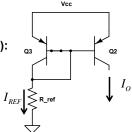
$$A_V = -g_m(\infty \parallel r_o) = -g_m r_o$$

$$A_V = -\frac{I_C}{V} \frac{V_A}{I} = -\frac{V_A}{V}$$

Typical values:

$$V_A = 100V$$

$$A_V \sim -4000$$


Lecture 20-Current Mirrors

Simple Current Source - Current Mirror

Q₂ and Q₃ are matched (identical):

- Same I_S
- Same β

Since I_O ≈ I_{REF}

this is called "current mirror"

Note $V_{BE3} = V_{BE2}$

In this example,

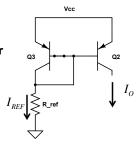
$$I_{REF} = \frac{V_{CC} - V_{BE3}}{R_{REF}}$$

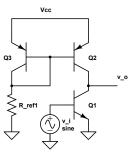
For simplicity, assume
$$V_A = \infty$$

$$I_{C3} = I_S \exp\left(\frac{V_{BE3}}{V_T}\right) \qquad I_{C2} = I_S \exp\left(\frac{V_{BE2}}{V_T}\right) = I_{C3}$$

$$I_{REF} = I_{C3} + I_{B3} + I_{B2} = I_{C2} + \frac{I_{C2}}{\beta} + \frac{I_{C2}}{\beta}$$

$$I_{\scriptscriptstyle O} = \frac{I_{\scriptscriptstyle REF}}{1+2/\beta} \approx I_{\scriptscriptstyle REF}$$


Lecture20-Current Mirrors


3

CE Amplifier with Current Mirror Bias

Q₂ and Q₃ form a current mirror pair

$$I_O = \frac{I_{REF}}{1 + 2/\beta} \approx I_{REF}$$

$$A_{V} = -g_{m1}(r_{o1} || r_{o2})$$

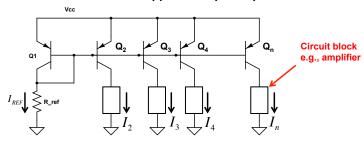
Example:

$$I_{REF} = 1mA$$
, $\beta_1 = \beta_2 = 100$, $V_{A1} = V_{A2} = 100V$

$$g_{m1} = 40mS$$

$$r_{o1} = r_{o2} = 100V / 1mA = 100k\Omega$$

$$A_{V} = -40mS \cdot 50k\Omega = -2000$$


Lecture20-Current Mirrors

4

BSAC

Mirror with Multiple Current Sources

One reference current can support multiple amplifiers:

For simplicity, assume $V_A = \infty$

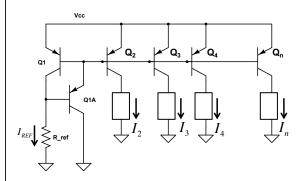
All
$$V_{\mathit{BE}}$$
 are equal

$$I_{C2} = I_{C3} = I_{C4} = \dots = I_{Cn}$$

$$I_{REF} = I_{C1} + I_{B1} + I_{B2} + \dots + I_{Bn}$$

$$I_i = \frac{I_{REF}}{1 + \frac{n}{\beta}}$$

When *n* is large, $\frac{n}{\beta}$ is not negligible


Cal

Lecture20-Current Mirrors

5

Mirror with Multiple Current Sources

Use a BJT to boost up supplies to multiple base currents:

$$V_{A} = \infty$$

$$I_{REF} = I_{C1} + I_{B1A} = I_{C1} + \frac{I_{E1A}}{1 + \beta}$$

$$= I_{C1} + \frac{I_{B2} + I_{B3} + \dots + I_{Bn}}{1 + \beta}$$

$$= I_{C1} + \frac{nI_{B}}{1 + \beta} = I_{C1} + \frac{I_{C1} / \beta}{1 + \beta}$$

$$I_{i} = I_{C1} = \frac{I_{REF}}{1 + \frac{n}{\beta(\beta + 1)}} \approx I_{REF}$$

Lecture20-Current Mirrors

Current Mirror with Different Currents

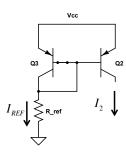
Q₂ and Q₃ have same current gain, but different area.

$$V_{BE3} = V_{BE2}$$

For simplicity, assume $V_A = \infty$

$$I_{C3} = I_{S3} \exp\left(\frac{V_{BE3}}{V_T}\right)$$

Recall
$$I_S = \frac{qA_ED_n}{W_B} \frac{n_i^2}{N_B} \propto A_E$$

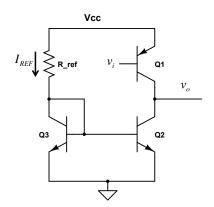

$$I_{C2} = I_{S2} \exp\left(\frac{V_{BE2}}{V_T}\right) = \left(\frac{A_{E2}}{A_{E3}}\right) I_{C3}$$

$$I_{2} \downarrow I_{REF} = I_{C3} + I_{B3} + I_{B2} = I_{C3} + \frac{I_{C3}}{\beta} + \frac{I_{C2}}{\beta}$$

$$I_{REF} = I_{C3} + I_{B3} + I_{B2} = I_{C3} + \frac{I_{C3}}{\beta} + \frac{I_{C2}}{\beta}$$

$$I_{2} = \left(\frac{A_{E2}}{A_{E3}}\right) I_{C3} = \left(\frac{A_{E2}}{A_{E3}}\right) \frac{I_{REF}}{1 + 1/\beta + \eta/\beta} \approx \left(\frac{A_{E2}}{A_{E3}}\right) I_{REF}$$

$$\eta = \frac{A_{E2}}{A_{E3}}$$



$$I_{REF} = \frac{V_{CC} - V_{BE3}}{R_{REF}}$$

Lecture20-Current Mirrors

Current Mirrors for PNP CE-Amplifiers

$$I_{REF} = \frac{V_{CC} - V_{BE3}}{R_{BEE}}$$

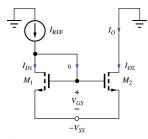
$$A_V = -g_{m1}(r_{o1} || r_{o2})$$

Example:

$$I_{REF} = 1mA, \ \beta_1 = \beta_2 = 100,$$

$$V_{A1} = V_{A2} = 100V$$

$$g_{m1} = 40mS$$


$$r_{o1} = r_{o2} = 100V / 1mA = 100k\Omega$$

$$A_V = -40mS \cdot 50k\Omega = -2000$$

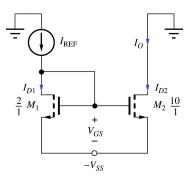
MOS Current Mirrors dc Analysis

$$\begin{aligned} V_{GS} &= V_{TN} + \sqrt{\frac{2I_{REF}}{K_n \left(1 + \lambda V_{DS1}\right)}} \\ I_O &= I_{D2} = \frac{K_n}{2} \left(V_{GS} - V_{TN}\right)^2 \\ I_O &= I_{REF} \end{aligned}$$

MOSFETs M_1 and M_2 are assumed to have identical V_{TN} , K_n ', I, and W/L ratios.

 I_{REF} provides operating bias to mirror.

$$V_{DS1} = V_{GS1} = V_{GS2} = V_{GS}$$



ecture 20-Current Mirrors

a

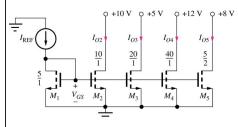
MOS Current Mirrors Changing the Mirror Ratio

$$K_{n1} = K_{n} \left(\frac{W}{L}\right)_{1} \qquad K_{n2} = K_{n} \left(\frac{W}{L}\right)_{2}$$

$$I_{O} = I_{REF} \frac{K_{n2} \left(1 + \lambda V_{DS2}\right)}{K_{n1} \left(1 + \lambda V_{DS1}\right)}$$

$$For simplicity, \lambda \approx 0$$

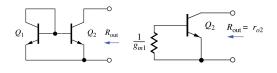
$$I_{O} = I_{REF} \frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{2}}$$


Mirror ratio can be changed by modifying *W/L* ratios of the two transistors forming the mirror. In the given current mirror, $I_o = 5I_{REF}$. For non-zero λ , the current ratio will vary slightly due to mismatch in V_{DS}

Lecture20-Current Mirrors

Current Mirrors with Multiple Current Sources

- Multiple sources can be operated from one reference transistor
- Reference current enters diode -connected transistor M1 establishing gate-source voltage to bias M2 through M5, each with a different W/L ratio.
- Absence of base current permits large numbers of MOSFETs to be driven by one reference transistor.



Lecture20-Current Mirrors

11

Current Mirrors Input and Output Resistances

The input resistance of the current mirror is set by the diode connected transistors:

$$\therefore R_{in} \cong \frac{1}{g_{m1}}$$

The output resistance is equal to the output resistance of the Q_2 or M_2 :

$$\therefore R_{out} = r_{o2}$$

Lecture20-Current Mirrors

