Common-Emitter Amplifier – ω_H

Open-Circuit Time Constant (OCTC) Method

At high frequencies, impedances of coupling and bypass capacitors are small enough to be considered short circuits. Open-circuit time constants associated with impedances of device capacitances are considered instead.

$$\omega_H = \frac{1}{\sum_{i=1}^{m} R_{io} C_i}$$

where R_{io} is resistance at terminals of ith capacitor C_i with all other capacitors open-circuited.

For a C-E amplifier, assuming $C_L = 0$

$$R_\infty = r_{\pi 0}$$

$$\omega_H = \frac{1}{R_{\pi 0} C_{\pi} + R_{io} C_{\mu} + r_{\pi 0} C_T}$$
Common-Emitter Amplifier
High Frequency Response - Miller Effect

• First, find the simplified small-signal model of the C-E amp.
• Replace coupling and bypass capacitors with short circuits
• Insert the high frequency small-signal model for the transistor

\[
\begin{align*}
\pi \text{-}\text{input} & = R_{\pi} = R_{\pi} + R_c (1 + A_{bc}) \\
\end{align*}
\]

Input gain is found as

\[
A_i = \frac{v_i}{v_i} = \frac{R_{\pi}}{R_{\pi} + R_m} \cdot \frac{r_x}{r_x + r_x}
\]

Terminal gain is

\[
A_{bc} = \frac{V_c}{V_b} = -g_m \left(\frac{r_x}{R_c \parallel R_3} \right) \approx -g_m R_L
\]

Using the Miller effect, we find the equivalent capacitance at the base as:

\[
C_{eqB} = C_\mu (1 - A_{bc}) + C_\pi (1 - A_{bc})
\]

\[
= C_\mu (1 - \left[-g_m R_L \right]) + C_\pi (1 - 0)
\]

\[
= C_\mu (1 + g_m R_L) + C_\pi
\]
Common-Emitter Amplifier – ω_H
High Frequency Response - Miller Effect (cont.)

- The total equivalent resistance at the base is
 \[R_{q0} = r_e \parallel R_i \parallel (R_i R_f) \]
- The total capacitance and resistance at the collector are
 \[C_{cC} = C_p + C_L \]
 \[R_{qC} = r_e R_i R_f \]
- Because of interaction through C_μ, the two RC time constants interact, giving rise to a dominant pole.

\[\omega_{p1} = \frac{1}{r_e \parallel [C_x + C_p (1 + g_m R_L)] + R_f (C_p + C_L)} \]
\[\omega_{p2} = \frac{1}{r_e R_f} \]

Common-Source Amplifier – ω_H
Open-Circuit Time Constants

Analysis similar to the C-E case yields the following equations:

\[R_i = R_i \parallel R_f \]
\[R_L = R_D \parallel R_i \parallel R_o \]
\[v_{in} = v_i \frac{R_G}{R_f + R_G} \]
\[C_T = C_{GS} + C_{GD} (1 + g_m R_L) + \frac{R_f}{R_m} (C_{GD} + C_L) \]
\[\omega_{p1} = \frac{1}{R_m C_T} \]
\[\omega_{p2} = \frac{g_m}{C_{GD} + C_L} \]
\[\omega_z = \frac{g_m}{C_{GD}} \]
C-S Amplifier High Frequency Response
Source Degeneration Resistance

First, find the simplified small-signal model of the C-S amp.

Recall that we can define an effective g_m to account for the unbypassed source resistance.

\[g'_m = \frac{g_m}{1 + g_m R_S} \]

C-S Amplifier High Frequency Response
Source Degeneration Resistance (cont.)

Input gain is found as

\[A_i = \frac{v_i}{v_j} = \frac{R_G}{R_i + R_G} = \frac{R_1 \parallel R_2}{R_1 + R_1 \parallel R_2} \]

Terminal gain is

\[A_{gd} = \frac{v_d}{v_g} = -g_m \left(R_D \parallel R_S \parallel R_3 \right) \approx -g_m \left(\frac{R_D \parallel R_3}{1 + g_m R_S} \right) \]

Again, we use the Miller effect to find the equivalent capacitance at the gate as:

\[C_{eqG} = C_{GD} \left(1 - A_{gd} \right) + C_{GS} \left(1 - A_{gs} \right) = C_{GD} \left(1 - \frac{-g_m R_S}{1 + g_m R_S} \right) + C_{GS} \left(1 - \frac{g_m R_S}{1 + g_m R_S} \right) \]

\[= C_{GD} \left[1 + g_m \left(R_D \parallel R_3 \right) \right] + C_{GS} \left[1 + g_m R_S \right] \]
C-S Amplifier High Frequency Response
Source Degeneration Resistance (cont.)

The total equivalent resistance at the gate is
\[R_{eqg} = R_c \parallel R_t = R_b \]

The total capacitance and resistance at the drain are
\[C_{qPD} = C_{GD} + C_L \]
\[R_{qPD} = R_{pd} \parallel R_t \parallel R_s = R_p \parallel R_s = R_L \]

Because of interaction through \(C_{GD} \), the two RC time constants interact, giving rise to the dominant pole:
\[\omega_p^1 = \frac{1}{R_{sh} \left[\frac{C_{gs}}{1 + g_m R_s} + C_G (1 + g_m R_L) \right] + R_L (C_{GD} + C_L)} \]

And from previous analysis:
\[\omega_p^2 = \frac{g_m}{C_{gs} + C_L} = \frac{g_m}{(1 + g_m R_s)(C_{gs} + C_L)} \]
\[\omega_z = \frac{+g_m}{C_{GD} = \frac{+g_m}{(1 + g_m R_s)(C_{GD})} \]

C-E Amplifier High Frequency Response
Emitter Degeneration Resistance

Analysis similar to the C-S case yields the following equations:
\[R_{e0} = R_e \parallel \left[r_e + (\beta_e + 1)R_E \right] \]
\[R_A = R_t \parallel R_s = R_t \parallel R_s \]
\[R_L = R_L \parallel R_t \parallel R_s \parallel R_1 \parallel R_3 = R_L \parallel R_3 \]
\[\omega_p^1 = \frac{1}{R_{e0} C_T} \]
\[\omega_p^2 = \frac{g_m}{C_e + C_L} = \frac{g_m}{(1 + g_m R_E)(C_e + C_L)} \]
\[\omega_z = \frac{+g_m}{C_p = \frac{+g_m}{(1 + g_m R_E)}(C_p)} \]
Gain-Bandwidth Trade-offs Using Source/Emitter Degeneration Resistors

Adding source resistance to the C-S (or C-E) amp causes gain to decrease and dominant pole frequency to increase.

\[A_{pd} = \frac{v_d}{v_g} = -\frac{g_m(R_D \parallel R_i)}{1 + g_mR_S} \]

\[\omega_{p1} = \frac{1}{R_h\left[\frac{C_{GS}}{1 + g_mR_S} + C_{GD}(1 + \frac{g_mR_L}{1 + g_mR_S}) + \frac{R_L}{R_h}(C_{GD} + C_L)\right]} \]

However, decreasing the gain also decreased the frequency of the second pole.

Increasing the gain of the C-E/C-S stage causes pole-splitting, or increase of the difference in frequency between the first and second poles.

\[\omega_{p2} = \frac{g_m}{(1 + g_mR_S)(C_{GS} + C_L)} \]

High Frequency Poles
Common-Base Amplifier

Since \(C_e \) does not couple input and output, input and output poles can be found directly.

\[A_i = \frac{1}{g_m} \left(\frac{1}{g_m} + R_I\right) = \frac{1}{1 + g_mR_I} \]

\[A_v = g_m\left(R_C \parallel R_I\right) = g_mR_L \]

\[R_C = r_e \left[1 + g_m\left(R_L \parallel R_C\right)\right] \]

\[C_{eqC} = C_e + C_L \]

\[R_{eqC} = R_C \parallel R_L = R_L \]

\[\omega_{p1} = \left[\frac{1}{g_m\left(R_C \parallel R_L\right)}\right] \approx \frac{g_m}{C_e} > \omega_T \]

\[\omega_{p2} = \frac{1}{(R_C \parallel R_L)(C_e + C_L)} \approx \frac{1}{R_L(C_e + C_L)} \]
High Frequency Poles
Common-Gate Amplifier

\[C_{eqS} = C_{GS} \]
\[R_{eqS} = \frac{1}{g_m} \equiv R_i \parallel R_f \]
\[\omega_{p1} = \frac{1}{\left(\frac{1}{g_m} \parallel R_f \right)} C_{GS} \]

\[C_{eqD} = C_{GD} + C_L \]
\[R_{eqD} = R_{gd} \parallel R_f = R_L \]
\[\omega_{p2} = \frac{1}{\left(R_{gd} \parallel R_f \right) (C_{GD} + C_L)} \equiv \frac{1}{R_L (C_{GD} + C_L)} \]

Similar to the C-B, since \(C_{GD} \) does not couple the input and output, input and output poles can be found directly.

High Frequency Poles
Common-Collector Amplifier

\[A_{hc} = \frac{V_e}{V_i} = \frac{g_m R_L}{1 + g_m R_L} \]
\[A_i = \frac{V_o}{V_i} = \frac{R_{in}}{R_f + R_m} \]

\[C_{eqS} = C_\mu (1 - A_{hc}) + C_\pi (1 - A_{hc}) = C_\pi (1 - 0) + C_\pi \left(1 - \frac{g_m R_L}{1 + g_m R_L} \right) \]
\[C_{eqE} = C_\pi + \frac{C_\pi}{1 + g_m R_L} \]
\[C_{eqL} = C_\pi + C_L \]
\[R_{eqS} = (R_{in} + r_\pi) \parallel R_m = (R_f \parallel r_f) \parallel (r_f + (\beta_o + 1) R_L) = (R_{in} + r_f) \parallel (r_f + (\beta + 1) R_L) \]
\[R_{eqD} = R_f \parallel R_L = \left(\frac{1 + (R_{in} + r_f)}{g_m} \frac{1}{\beta_o + 1} \right) \parallel R_L \]
High Frequency Poles
Common-Collector Amplifier (cont.)

The low impedance at the output makes the input and output time constants relatively well decoupled, leading to two poles.

\[\omega_{p1} = \frac{1}{(R_h + r_c) \| \left[\frac{C_p}{\beta_+ + \beta + 1} \right] \left(\frac{C_p}{1 + g_m R_L} \right) + \frac{C_p}{1 + g_m R_L} + \frac{C_p}{g_m R_L} + \frac{C_p}{R_h} + \frac{C_p}{R_h}} \]

\[\omega_{p2} = \frac{1}{\left(\frac{1}{g_m R_h} + \frac{1}{R_i} \right) \| R_i} \left(C_p + C_t \right) \]

The feed-forward high-frequency path through \(C_p \) leads to a zero in the C-C response. Both the zero and the second pole are quite high frequency and are often neglected, although their effect can be significant with large load capacitances.

\[\omega_z = \frac{g_m}{C_p} \]

High Frequency Poles
Common-Drain Amplifier

Similar the the C-C amplifier, the C-D high frequency response is dominated by the first pole due to the low impedance at the output of the C-C amplifier.

\[\omega_{p1} = \frac{1}{R_h (C_{GD} + \frac{C_{GS}}{1 + g_m R_L})} \]

\[\omega_{p2} = \frac{1}{\left(\frac{1}{g_m R_h} \| R_i \right) \left(C_{GS} + C_t \right)} \]

\[\omega_z = \frac{g_m}{C_{GS}} \]
Frequency Response
Cascode Amplifier

There are two important poles: the input pole for the C-E and the output pole for the C-B stage. The intermediate node pole can usually be neglected because of the low impedance at the input of the C-B stage. R_{L1} is small, so the second term in the first pole can be neglected. Also note the R_{L1} is equal to $1/g_{m2}$.

$$\omega_{pB1} = \frac{1}{r_{mC}C_T} = \frac{1}{r_{mC}([C_{\mu1} + C_{\pi1} + C_{s1}] + \frac{R_{L1}}{r_{mC}}(C_{s1} + C_{L1}))}$$

$$\omega_{pB2} = \frac{1}{r_{mC}([C_{\mu1} + C_{\pi1} + 1/g_{m2}^2(\mu_{s1} + C_{\pi2})])}$$

$$\omega_{pC2} = \frac{1}{R_{L}([C_{\mu2} + C_{L2}])}$$

Frequency Response of Multistage Amplifier

- Problem: Use open-circuit and short-circuit time constant methods to estimate upper and lower cutoff frequencies and bandwidth.

- Approach: Coupling and bypass capacitors determine the low-frequency response; device capacitances affect the high-frequency response.

- At high frequencies, ac model for the multi-stage amplifier is as shown.
Frequency Response
Multistage Amplifier Parameters (example)

Parameters and operation point information for the example multistage amplifier.

<table>
<thead>
<tr>
<th>Table 17.3</th>
<th>Transistor Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_m</td>
</tr>
<tr>
<td>M_1</td>
<td>10 mS</td>
</tr>
<tr>
<td>Q_2</td>
<td>67.8 mS</td>
</tr>
<tr>
<td>Q_3</td>
<td>79.6 mS</td>
</tr>
</tbody>
</table>

Frequency Response
Multistage Amplifier: High-Frequency Poles

High-frequency pole at the gate of M_1: Using our equation for the C-S input pole:

$$f_{p1} = \frac{1}{2\pi} \frac{1}{R_{s1} \left[C_{GD} \left(1 + g_mR_{1s} \right) + C_{GDS} + \frac{1}{R_{s1} \left(C_{GD} + C_{L1} \right)} \right]}$$

$$f_{p1} = \frac{1}{2\pi} \frac{1}{9.9 k\Omega \left[1 pF \left(1 + 0.01 S \left(3.33 k\Omega \right) \right) + 5 pF + \frac{469\Omega}{9.9 k\Omega} \left(1 pF + 266 pF \right) \right]} = 689 \text{ kHz}$$
Multistage Amplifier: High-Freq. Poles (cont.)

High-frequency pole at the base of Q₂: From the detailed analysis of the C-S amp, we find the following expression for the pole at the output of the M₁ C-S stage:

\[f_{p2} = \frac{1}{2\pi} \frac{C_{GS1}g_{m1} + C_{GD1}(g_{m1} + g_{th1} + g_{L1}) + C_{L1}g_{th1}}{[C_{GS1}(C_{GD1} + C_{L1}) + C_{GD1}C_{L1}]} \]

For this particular case, \(C_{L1}\) (Q₂ input capacitance) is much larger than the other capacitances, so \(f_{p2}\) simplifies to:

\[f_{p2} \approx \frac{1}{2\pi \left(\frac{C_{L1}g_{th1}}{C_{GS1}(C_{GD1} + C_{L1})} \right)} = \frac{1}{2\pi \left(\frac{9.9k\Omega}{4(5pF + 1pF)} \right)} = 2.68 \text{ MHz} \]

High-frequency pole at the base of Q₃: Again, due to the pole-splitting behavior of the C-E second stage, we expect that the pole at the base of Q₃ will be set by equation 17.96:

\[f_{p3} \approx \frac{g_{m2}}{2\pi \left(C_{\pi2}(1 + \frac{C_{L2}}{C_{\mu2}}) + C_{L2} \right)} \]

The load capacitance of Q₂ is the input capacitance of the C-C stage.

\[C_{L2} = C_{m3} \frac{C_{s1}}{1 + g_{m3}(R_{E3} || R_L)} = 1pF + \frac{50pF}{1 + 79.6mS(3.3k\Omega || 250\Omega)} = 3.55pF \]

\[f_{p3} \approx \frac{67.8mS[1k\Omega/(1k\Omega + 250\Omega)]}{2\pi[39pF(1 + \frac{3.55pF}{1pF}) + 3.55pF]} = 47.7 \text{ MHz} \]
Frequency Response
Multistage Amplifier: f_H Estimate

There is an additional pole at the output of Q3, but it is expected to be at a very high frequency due to the low output impedance of the C-C stage. We can estimate f_H from eq. 16.23 using the calculated pole frequencies.

$$f_H = \frac{1}{\frac{1}{f_{p1}^2} + \frac{1}{f_{p2}^2} + \frac{1}{f_{p3}^2}} = 667 \text{ kHz}$$

The SPICE simulation of the circuit on the next slide shows an f_H of 667 kHz and an f_L of 530 Hz. The phase and gain characteristics of our calculated high frequency response are quite close to that of the SPICE simulation. It was quite important to take into account the pole-splitting behavior of the C-S and C-E stages. Not doing so would have resulted in a calculated f_H of less than 550 kHz.