
UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering

Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Bode Plot Tutorial

Contents

1 Introduction 1

2 Bode Plots Basics 1

2.1 Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Combining Poles and Zeroes 4

1 Introduction

Although you should have learned about Bode plots in previous courses, this tutorial will give you a brief
review of the material in case your memory is fuzzy.

2 Bode Plots Basics

Making the Bode plots for a transfer function involves drawing both the magnitude and phase plots. The
magnitude is plotted in decibels (dB) while the phase is plotted in degrees (◦). For both plots, the horizontal
axis is either frequency (f) or angular frequency (ω), measured in Hz and rad/s respectively. In addition,
the horizontal axis should be logarithmic (i.e. increasing by factors of 10).

Most of the transfer functions we will encounter in this lab manual can be rearranged into the general
form:

H(jω) = A · jω/ωz1 (1 + jω/ωz2) (1 + jω/ωz3) . . .

jω/ωp1 (1 + jω/ωp2) (1 + jω/ωp3) . . .
, (1)

where A is an arbitrary constant and j is
√
−1. Besides the exception of jω/ωc, the basic component of this

transfer function is 1 + jω/ωc, where ωc is some numerical constant. Let us analyze this basic component
first before we analyze the transfer function as a whole.

2.1 Magnitude

Recall the definition of magnitude (measured in dB):

|H(jω)|
dB

= 20 log |H(jω)| = 20 log

√

(ℜ [H(jω)])
2

+ (ℑ [H(jω)])
2

(2)

Let us apply this definition to our basic component (1+ jω/ωc), which is also called a zero when it appears
in the numerator of the transfer function:

|1 + jω/ωc|dB
= 20 log |1 + jω/ωc| = 20 log

√

1 + (ω/ωc)
2

(3)

For small values of ω, we have 20 log |1 + jω/ωc| ≈ 0 dB. For large values of ω, 20 log |1 + jω/ωc| → ∞.
When ω = ωc, the magnitude of the transfer function is approximately 3 dB.
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Since there is little change in the magnitude of the transfer function from ω = 0 to ω = ωc, we can
approximate the magnitude expression as equal to 0 dB within this interval. As for the ω > ωc interval, the
(ω/ωc) term dominates in the expression; thus, we can approximate the magnitude as 20 log (ω/ωc). Also,
notice that, within the ω > ωc interval, the magnitude increases by 20 dB when ω increases by a factor
of 10. Therefore, the overall Bode plot approximation for a zero is the following: 0 dB for ω < ωc and a
20 dB/decade line for ω > ωc. Please see Figure 1 for an illustration of this approximation.

Figure 1 also shows the magnitude Bode plot for a DC zero, which has the form jω/ωc. Because the DC
zero lacks the “1” term, its Bode plot approximation differs from the normal zero: instead of two different
regions, the DC zero consists of only a 20 dB/decade line. Its intersection with the frequency axis is located
at ωc because 20 log (ωc/ωc) = 0dB. Note that ωc is 105 rad/s in this example.

−40

−20

0

20

40

M
ag

n
it

u
d
e

(d
B

)

103 104 105 106 107

ω (rad/s)

20 log |1 + jω/ωc|
20 log |jω/ωc|

Figure 1: Magnitude Bode plots of a normal zero and a DC zero (with both having ωc = 105 rad/s). Notice
the plots overlap for ω > ωc.

The basic transfer function component, 1 + jω/ωc, can also appear in the denominator (in which case
it is called a pole). Even though this may seem like an entirely different problem, the same principles
apply. Recall that we took the logarithm of our transfer function when we expressed our results in decibels.
Also, recall that taking the logarithm of the inverse of a function simply gives the negated logarithm of the
function. In other words, we simply have to negate the results of our zero analysis to get the appropriate
expressions for poles. The same argument applies with DC poles, which has the form jω/ωc.

In general, a normal pole will have a constant 0 dB value for ω < ωc and will drop by 20 dB/decade for
ω > ωc. A DC pole will drop by 20 dB/decade for any ω and will intersect the frequency axis (0 dB) at
ω = ωc. The results are shown in Figure 2.

2.2 Phase

Now, let us take a look at the respective phases of a zero, DC zero, pole, and DC pole. Recall the definition
of phase:

Arg (H(jω)) = arctan

(ℑ[H(jω)]

ℜ[H(jω)]

)

(4)
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Figure 2: Magnitude Bode plots of a normal pole and a DC pole (with both having ωc = 105 rad/s). Notice
the plots overlap for ω > ωc.

Applying this definition to the normal zero:

Arg(1 + jω/ωc) = arctan

(

ω

ωc

)

(5)

For ω = 0, Arg(1 + jω/ωc) = 0. For ω → ∞, Arg(1 + jω/ωc) → 90◦. For ω = ωc, Arg(1 + jω/ωc) → 45◦.
Thus, our approximation for the phase of a zero is the following: 0◦ for ω < 0.1ωc, 45◦ for ω = ωc, and 90◦

for ω > 10ωc. The phase Bode plot is then constructed using straight lines that join these regions together.
As for the DC zero, its phase stays constant at 90◦. Please refer to Figure 3 for an illustration of these plots.

The phase analysis of poles and DC poles can be conducted in a similar fashion. Let us begin by applying
the definition of phase to the pole and DC pole, respectively:

Arg

(

1

1 + jω/ωc

)

= Arg (1) − Arg (1 + jω/ωc) = 0 − Arg (1 + jω/ωc) = −Arg (1 + jω/ωc) (6)

Arg

(

1

jω/ωc

)

= Arg (1) − Arg (jω/ωc) = 0 − Arg (jω/ωc) = −Arg (jω/ωc) (7)

As you might notice, our phase plots for poles and DC poles will simply be the negated versions of the zero
plots. Please see Figure 4 for an illustration.

3 Combining Poles and Zeroes

Generally, a transfer function may involve many poles and zeroes (as well as their DC counterparts). In
order to simplify the task of drawing Bode plots, your first step should be to factor the transfer function
into the canonical form as shown in Equation 1. This makes it easy to identify all of the poles and zeroes.

Then, you’ll have to handle the constant coefficient, A (if it is present). The magnitude of A will affect
your magnitude plot, and the sign of A will affect your phase plot. More specifically, your magnitude plot
must be offset by 20 log |A|. For example, if A = 10, then your magnitude plot must be shifted up by 20 dB.
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Figure 3: Phase Bode plots of a normal zero and a DC zero (with both having ωc = 105 rad/s). Notice the
plots overlap for ω > 10ωc.
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Figure 4: Phase Bode plots of a normal pole and a DC pole (with both having ωc = 105 rad/s). Notice the
plots overlap for ω > 10ωc.

Similarly, if A = 1/10, then your magnitude plot must be shifted down by 20 dB. If A < 0, then your phase
plot must be shifted up (or down—it’s the same in this case) by 180◦. Next, you need to draw each pole
and zero plot individually on the same graph (whether you’re making a magnitude or phase plot). Finally,
add together all the curves that you have drawn to obtain the final Bode plot. Remember to shift your
plots accordingly based on the constant A as mentioned previously. This superposition principle is possible
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because of the decomposition of the transfer function into zeroes and poles.
When adding the poles and zeroes in the final plot, remember that in areas where two curves are constant,

the result will just be the sum of the constant values. When one is a constant and the other is linear, the
result will be a line that starts at that constant value and progress with a slope equal to the linear curve.
Finally, when both are linear, the sum will be a line that has a slope equal to the sum of the slopes.
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