PROBLEM SET \#10

Issued: Friday, November 2, 2018
Due: Friday, November 16, 2018, at 12:00 noon via Gradescope.

1. Sedra \& Smith, Problem 8.98
2. For the amplifier in Figure $\operatorname{PS} 10.1$, assume that Q_{1} and Q_{2} have the properties listed in Table PS10.1. First, find values for each of the BJT internal capacitances C_{μ}, C_{π}. Then find the voltage gain $A_{v}\left(\frac{v_{\text {out }}}{v_{s}}\right)$, input and output resistances $R_{\text {in }} \& R_{\text {out }}$, and upper and lower corner frequencies $f_{L} \& f_{H}$.

Figure PS10.1

PARAMETER	VALUE	UNIT
β	100	A / A
V_{A}	70	V
$V_{b i, e}$	0.9	V
$V_{b i, c}$	0.5	V
$L_{o v}$	0.05	μm
$C_{j c, 0}$	4	$p F$
$C_{j e, 0}$	8	$p F$
τ_{F}	350	$p s$
	Table PS10.1	

3. For the amplifier in Figure PS10.2, assume that M_{1} and M_{2} have the parameters listed in Table PS10.2. Find $A_{v}\left(\frac{v_{\text {out }}}{v_{s}}\right), R_{\text {in }}, R_{\text {out }}, f_{L}$, and f_{H}.

Figure PS10.2

PARAMETER	VALUE	UNIT
W	200	μm
L	1.2	μm
μ_{n}	450	$\mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s})$
μ_{p}	250	$\mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s})$
$C_{o x}{ }^{\prime \prime}$	0.5	$\mathrm{fF} / \mathrm{\mu m}^{2}$
$V_{t n}$	-2	V
$V_{t p}$	4	V
$L_{o v}$	0.1	μm
$C_{d b 0}$	20	$f F$
$C_{s b 0}$	20	$f F$
V_{0}	0.7	V
λ	0.02	V^{-1}

Table PS10.2
4. For the amplifier in Figure PS10.3, assume that M_{1} has the properties listed in Table PS10.2, and that Q_{1} has the properties listed in Table PS10.1. Find $A_{v}\left(\frac{v_{\text {out }}}{v_{s}}\right), R_{\text {in }}, R_{\text {out }}, f_{L}$, and f_{H}.

Figure PS10.3
5. For the amplifier in Figure PS10.4, assume that Q_{1} and Q_{2} have the properties listed in Table PS10.1. Find $A_{v}\left(\frac{v_{\text {out }}}{v_{s}}\right), R_{\text {in }}, R_{\text {out }}, f_{L}$, and f_{H}.

Figure PS10.4
6. Find the Q-points of the transistors in Figure PS10.2 if C_{2} is replaced with a short circuit and the $1 M \Omega$ resistor is removed from the circuit.
7. For the circuit shown in Figure PS10.5, X_{1} is an ideal OpAmp and assume M_{1} and M_{2} have the properties listed in Table PS10.2. Assume Q_{2} has the properties listed in Table PS 10.1. Q_{1} is a parallel combination of four $n p n$ transistors having the properties listed in Table PS 10.1. Find the expression of $\mathbf{V}_{\mathbf{P}}$ and $\mathbf{V}_{\mathbf{c}}$. [Hint: You may assume both Q_{1} and Q_{2} are biased in forward active region. In addition, this is a case where you cannot just assume the diodes' turnon voltage is $V_{B E(o n)}$. You will need to be more accurate.]

Figure PS10.5
8. For the circuit shown in Figure PS10.6. Q_{1}, Q_{2} and Q_{3} have the same properties, and Q_{4} and Q_{5} have the same properties. $V_{B E, o n, Q 1}=0.7 \mathrm{~V}, V_{B E, o n, Q 4}=0.65 \mathrm{~V}$. Solve of $V_{R E F}$. Neglect early effect.

Figure PS10.6

