PROBLEM SET #10

Issued: Friday, November 2, 2018 Due: Friday, November 16, 2018, at 12:00 noon via Gradescope.

- 1. Sedra & Smith, Problem 8.98
- 2. For the amplifier in Figure PS10.1, assume that Q_1 and Q_2 have the properties listed in Table PS10.1. First, find values for each of the BJT internal capacitances C_{μ}, C_{π} . Then find the voltage gain $A_v(\frac{v_{out}}{v_s})$, input and output resistances $R_{in} \& R_{out}$, and upper and lower corner frequencies $f_L \& f_H$.

PARAMETER	VALUE	UNIT	
β	100	A/A	
V_A	70	V	
$V_{bi,e}$	0.9	V	
$V_{bi,c}$	0.5	V	
L_{ov}	0.05	μm	
$V_{bi,e}$ $V_{bi,c}$ L_{ov} $C_{jc,0}$ $C_{je,0}$	4	pF	
$C_{je,0}$	8	pF	
$ au_F$	350	ps	
Table PS10.1			

3. For the amplifier in Figure PS10.2, assume that M_1 and M_2 have the parameters listed in Table PS10.2. Find $A_v(\frac{v_{out}}{v_s})$, R_{in} , R_{out} , f_L , and f_H .

Figure PS10.2

PARAMETER	VALUE	UNIT
W	200	μm
L	1.2	μm
μ_n	450	$cm^2/(V\cdot s)$
μ_p	250	$cm^2/(V\cdot s)$
$C_{ox}^{\prime\prime}$	0.5	$fF/\mu m^2$
V_{tn}	-2	V
V_{tp}	4	V
L_{ov}	0.1	μm
C_{db0}	20	fF
C_{sb0}	20	fF
V_0	0.7	V
λ	0.02	V^{-1}

Table PS10.2

4. For the amplifier in Figure PS10.3, assume that M_1 has the properties listed in Table PS10.2, and that Q_1 has the properties listed in Table PS10.1. Find $A_v(\frac{v_{out}}{v_s})$, R_{in} , R_{out} , f_L , and f_H .

Figure PS10.3

5. For the amplifier in Figure PS10.4, assume that Q_1 and Q_2 have the properties listed in Table PS10.1. Find $A_v(\frac{v_{out}}{v_s})$, R_{in} , R_{out} , f_L , and f_H .

Figure PS10.4

6. Find the Q-points of the transistors in Figure PS10.2 if C_2 is replaced with a short circuit and the $1M\Omega$ resistor is removed from the circuit.

EE 105

7. For the circuit shown in Figure PS10.5, X_1 is an ideal OpAmp and assume M_1 and M_2 have the properties listed in Table PS10.2. Assume Q_2 has the properties listed in Table PS 10.1. Q_1 is a parallel combination of four *npn* transistors having the properties listed in Table PS 10.1. Find the expression of V_P and V_C . [Hint: You may assume both Q_1 and Q_2 are biased in forward active region. In addition, this is a case where you cannot just assume the diodes' turn-on voltage is $V_{BE(on)}$. You will need to be more accurate.]

Figure PS10.5

8. For the circuit shown in Figure PS10.6. Q_1 , Q_2 and Q_3 have the same properties, and Q_4 and Q_5 have the same properties. $V_{BE,on,Q1} = 0.7V$, $V_{BE,on,Q4} = 0.65V$. Solve of V_{REF} . Neglect early effect.

