EE 105

PROBLEM SET #5

Issued: Friday, September 21, 2018

Due: Friday, September 28, 2018 at 12:00 noon via Gradescope.

- 1. Sedra & Smith, Problem 3.20
- 2. Sedra & Smith, Problem 4.43
- 3. Sedra & Smith, Problem 5.24
- 4. Sedra & Smith, Problem 5.28
- 5. Sedra & Smith, Problem 5.34

For problems 6 and 7 below, use the parameters in Table PS5.1 as needed.

PARAMETER	NMOS VALUE	PMOS VALUE	UNIT
V_{TO}	0.75	-0.75	V
γ	0.75	0.5	$\sqrt{\mathrm{V}}$
$2\phi_f$	0.6	0.6	V
K'	25	10	$\mu A/V^2$

Table PS5.1

6. Identify the source, drain, gate and bulk terminals, and find the current *I* in the transistors in Figure PS5.1. Assume $V_{TN} = 0.75$ V.

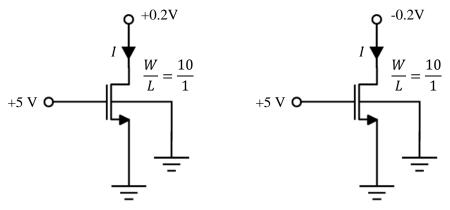


Figure PS5.1

- 7. Consider transistors operating in their linear regions for the questions below.
 - (a) What is the W/L ratio required for an NMOS transistor to have an on-resistance of 1 k Ω when $V_{GS} = 5$ V and $V_{SB} = 0$? Assume $V_{TN} = 0.75$ V.
 - (b) Repeat for a PMOS transistor with $V_{GS} = -5$ V and $V_{SB} = 0$. Assume $V_{TP} = -0.75$ V.
- 8. Identify the region of operation of an NMOS transistor with $K_n = 250 \,\mu\text{A/V}^2$ and $V_{TN} = 1 \,\text{V}$ for:
 - (a) $V_{GS} = 5$ V and $V_{DS} = 6$ V
 - **(b)** $V_{GS} = 0$ V and $V_{DS} = 6$ V
 - (c) $V_{GS} = 2$ V and $V_{DS} = 2$ V
 - (d) $V_{GS} = 1.5$ V and $V_{DS} = 0.5$ V
 - (e) $V_{GS} = 2$ V and $V_{DS} = -0.5$ V
 - (f) $V_{GS} = 3$ V and $V_{DS} = -6$ V