EE 105

PROBLEM SET #6

Issued: Friday, September 28, 2018

Due: Friday, October 12, 2018 at 12:00 noon via Gradescope.

- 1. Sedra & Smith, Problem 5.44
- 2. Figure PS6.1 presents an NMOS transistor cross-section and its top-view. The length of the channel is $5\mu m$. The width of the channel changes linearly from $1\mu m$ at the source to $0.3\mu m$ at the drain. Derive the expression for the device current when operating in the saturation region as a function of μ_n , C_{ox} , V_{GS} , V_{DS} and V_{th} . Assume $\lambda = 0$.

Figure PS6.1

For problems 3~5 below, use the parameters in Table PS6.1 as needed.

PARAMETER	NMOS VALUE	PMOS VALUE	UNIT
V_{TO}	0.75	-0.75	V
γ	0.75	0.5	\sqrt{V}
$2\phi_f$	0.6	0.6	V
K'	25	10	$\mu A/V^2$

Table PS6.1

- 3. (a) Calculate the on-resistance for an NMOS transistor having $\frac{W}{L} = 100/1$ and operating with $V_{GS} = 5V$ and $V_{TN} = 0.75V$. (b) Repeat for a similar PMOS transistor with $V_{GS} = -5V$ and $V_{TP} = -0.75V$. (c) What $\frac{W}{L}$ is required for the PMOS transistor to have the same R_{on} as the NMOS transistor in (a)?
- **4.** (a) Calculate the drain current in an NMOS transistor if $K_n = 250 \frac{\mu A}{V^2}$, $V_{TN} = 1V$, $\lambda = 0.025V^{-1}$, $V_{GS} = 5V$, and $V_{DS} = 6V$. (b) Repeat assuming $\lambda = 0$.

For problem 5 below, use the parameters in Table PS6.2 as needed

$V_{SB}(V)$	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
$V_{TN}(V)$	0.75	0.91	1.09	1.23	1.38	1.51	1.60	1.72	1.82	1.90	2.01

Table PS6.2

5. (a) What is the on-resistance and voltage V_o for the parallel combination of the NMOS ($\frac{W}{L} = 10/1$) and PMOS ($\frac{W}{L} = 25/1$) transistors in Figure PS6.2 for $V_{in} = 0$? (b) For $V_{in} = 5V$? This circuit is called a transmission gate.

Figure PS6.2

Figure PS6.3

- 6. Indicate the region of operation for an *npn* transistor biased as follows:
 - (a) $V_{BE} = -5.0V$, $V_{BC} = 0.7V$.
 - **(b)** $V_{BE} = -5.0V$, $V_{BC} = -5.0V$.
 - (c) $V_{BE} = 0.7V, V_{BC} = 0.7V$.
 - (d) $V_{BE} = 0.7V$, $V_{BC} = -5.0V$.

- 7. Indicate the region of operation for an *pnp* transistor biased as follows:
 - (a) $V_{EB} = 0.7V, V_{CB} = 0.7V.$ (b) $V_{EB} = 0.7V, V_{CB} = -0.65.$ (c) $V_{EB} = -0.65V, V_{CB} = 0.7V.$
 - (d) $V_{EB} = -0.65V$, $V_{CB} = -0.65V$.
- 8. The common-emitter output characteristics for an *npn* transistor are given in Figure PS6.3. What are the values of β_F at (a) $I_C = 5mA$ and $V_{CE} = 5V$? (b) $I_C = 7mA$ and $V_{CE} = 7.5V$? (c) $I_C = 10mA$ and $V_{CE} = 14V$?
- **9.** (a) Find the *Q*-point, i.e., operating point, for the circuit in Figure PS6.4. Assume that $\beta_F = 50$ and $V_{BE} = 0.7V$. (b) Repeat the calculation if all the resistor values are decreased by a factor of 5. (c) Repeat (a) for Figure PS6.5. (d) Repeat (b) for Figure PS6.5.

- 10. (a) Find the *Q*-point for the circuit in Figure PS6.4 if the $33k\Omega$ resistor is replaced with a $22k\Omega$ one. Assume that $\beta_F = 75$. (b) Repeat (a) for the circuit in Figure PS6.5.
- 11. Design a four-resistor bias network for an *npn* transistor using the resistor values in Figure PS6.6 to give $I_C = 10\mu A$ and $V_{CE} = 6V$ if $V_{CC} = 18V$ and $\beta_F = 75$. I_C and V_{CE} must meet the specified values within a tolerance of $\pm 10\%$.
- 12. Design a four-resistor bias network for an *pnp* transistor using the resistor values in Figure PS6.6 to give $I_c = 13mA$ and $V_{CE} = 5V$ if $V_{CC} = -15V$ and $\beta_F = 50$. I_C and V_{CE} must meet the specified values within a tolerance of $\pm 10\%$.

	Ohms								
1.0	5.6	33	180	1000	5600	33000	180000		
1.1	6.2	36	200	1100	6200	36000	200000		
1.2	6.8	39	220	1200	6800	39000	220000		
1.3	7.5	43	240	1300	7500	43000	240000		
1.5	8.2	47	270	1500	8200	47000	270000		
1.6	9.1	51	300	1600	9100	51000	300000		
1.8	10	56	330	1800	10000	56000	330000		
2.0	11	62	360	2000	11000	62000	360000		
2.2	12	68	390	2200	12000	68000	390000		
24	13	75	430	2400	13000	75000	430000		
27	15	82	470	2700	15000	82000	470000		
3.0	16	91	510	3000	16000	91000	510000		
22	18	100	560	3300	18000	100000	560000		
2.5	20	110	620	3600	20000	110000	620000		
3.0	20	120	680	3900	22000	120000	680000		
3.9	24	130	750	4300	24000	130000	750000		
4.3	24	150	820	4700	27000	150000	820000		
4.7	21	160	910	5100	30000	160000	910000		
4.7 5.1	27 30	150 160	820 910	5100	30000	160000)		

Standard resistor values: All values available with a 5 percent tolerance. Bold values are available with 10 percent tolerance.

Megohms							
	16	27	4.3	6.8	11.0	18.0	
1.0	1.0	2.0	4.7	7.5	12.0	20.0	
1.1	1.8	3.0	5 1	8.2	13.0	22.0	
1.2	2.0	3.5	5.6	9.1	15.0		
1.3	2.2	3.0	62	10.0	16.0		
1.5	2.4	3.9	0.2				

Figure PS6.6