7.34 Consider a transistor biased to operate in the active mode at a dc collector current I_C . Calculate the collector signal current as a fraction of I_C (i.e., i_C/I_C) for input signals v_{bc} of +1 mV, -1 mV, +2 mV, -2 mV, +5 mV, -5 mV, +8 mV, -8 mV, +10 mV, -10 mV, +12 mV, and -12 mV. In each case do the calculation two ways:

- (a) using the exponential characteristic, and
- (b) using the small-signal approximation.

Present your results in the form of a table that includes a column for the error introduced by the small-signal approximation. Comment on the range of validity of the small-signal approximation.

7.35 An npn BJT with grounded emitter is operated with $V_{BE} = 0.700$ V, at which the collector current is 0.5 mA. A 5-k Ω resistor connects the collector to a +5-V supply. What is the resulting collector voltage V_C ? Now, if a signal applied to the base raises v_{BE} to 705 mV, find the resulting total collector current i_C and total collector voltage v_C using the exponential i_C - v_{BE} relationship. For this situation, what are v_{be} and v_c ? Calculate the voltage gain v_c/v_{be} . Compare with the value obtained using the small-signal approximation, that is, $-g_m R_C$.

7.36 A transistor with $\beta = 100$ is biased to operate at a dc collector current of 0.5 mA. Find the values of g_m , r_{π} , and r_e . Repeat for a bias current of 50 μ A.

7.37 A pnp BJT is biased to operate at $I_C = 1.0$ mA. What is the associated value of g_m ? If $\beta = 100$, what is the value of the small-signal resistance seen looking into the emitter (r_e) ? Into the base (r_π) ? If the collector is connected to a 5-k Ω load, with a signal of 5-mV peak applied between base and emitter, what output signal voltage results?

D 7.38 A designer wishes to create a BJT amplifier with a g_m of 30 mA/V and a base input resistance of 3000 Ω or more.

What collector-bias current should he choose? What is the minimum β he can tolerate for the transistor used?

7.39 A transistor operating with nominal g_m of 40 mA/V has a β that ranges from 50 to 150. Also, the bias circuit, being less than ideal, allows a $\pm 20\%$ variation in I_C . What are the extreme values found of the resistance looking into the base?

7.40 In the circuit of Fig. 7.20, V_{BE} is adjusted so that $V_C = 1 \text{ V}$. If $V_{CC} = 3 \text{ V}$, $R_C = 2 \text{ k}\Omega$, and a signal $v_{be} = 0.005 \sin \omega t$ volts is applied, find expressions for the total instantaneous quantities $i_C(t)$, $v_C(t)$, and $i_B(t)$. The transistor has $\beta = 100$. What is the voltage gain?

D *7.41 We wish to design the amplifier circuit of Fig. 7.20 under the constraint that V_{CC} is fixed. Let the input signal $v_{be} = \hat{V}_{be} \sin \omega t$, where \hat{V}_{be} is the maximum value for acceptable linearity. For the design that results in the largest signal at the collector, without the BJT leaving the active region, show that

$$R_c I_c = (V_{cc} - 0.3) / \left(1 + \frac{\hat{V}_{be}}{V_T}\right)$$

and find an expression for the voltage gain obtained. For $V_{cc}=3$ V and $\hat{V}_{be}=5$ mV, find the dc voltage at the collector, the amplitude of the output voltage signal, and the voltage gain.

7.42 The table below summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various conditions. Provide the missing entries. (*Note:* Isn't it remarkable how much two parameters can reveal?)

7.43 A BJT is biased to operate in the active mode at a dc collector current of 1 mA. It has a β of 100 and V_A of 100 V. Give the four small-signal models (Figs. 7.25 and 7.27) of the BJT complete with the values of their parameters.

Transistor	а	b	c	d	e		
$\begin{array}{l} \alpha \\ \beta \\ I_C \ (\text{mA}) \\ I_E \ (\text{mA}) \\ I_B \ (\text{mA}) \\ g_m \ (\text{mA/V}) \\ r_c \ (\Omega) \\ r_\pi \ (\Omega) \end{array}$	1.000	100	1.00 0.020	∞ 25	100 10.1 kΩ	0.90	1.10 700

than 10 mV). Find appropriate values for R_E and R_C . What is the value of voltage gain realized from signal source to output?

*7.58 The transistor in the circuit shown in Fig. P7.58 is biased to operate in the active mode. Assuming that β is very large, find the collector bias current I_C . Replace the transistor with the small-signal equivalent-circuit model of Fig. 7.26(b) (remember to replace the dc power supply with a short circuit). Analyze the resulting amplifier equivalent circuit to show that

$$\frac{v_{o1}}{v_i} = \frac{R_E}{R_E + r_e}$$

$$\frac{v_{o2}}{v_i} = \frac{-\alpha R_C}{R_E + r_e}$$

Figure P7.58

Find the values of these voltage gains (for $\alpha \simeq 1$). Now, if the terminal labeled v_{o1} is connected to ground, what does the voltage gain v_{o2}/v_i become?

Section 7.3: Basic Configurations

7.59 An amplifier with an input resistance of $100 \text{ k}\Omega$, an open-circuit voltage gain of 100 V/V, and an output resistance of 100Ω is connected between a $20\text{-k}\Omega$ signal source and a $2\text{-k}\Omega$ load. Find the overall voltage gain G_v . Also find the current gain, defined as the ratio of the load current to the current drawn from the signal source.

D 7.60 Specify the parameters $R_{\rm in}$, $A_{\nu\sigma}$, and R_{σ} of an amplifier that is to be connected between a 100-k Ω source and a 2-k Ω load and is required to meet the following specifications:

- (a) No more than 5% of the signal strength is lost in the connection to the amplifier input;
- (b) If the load resistance changes from the nominal value of $2 k\Omega$ to a low value of $1 k\Omega$, the change in output voltage is limited to 5% of nominal value; and
- (c) The nominal overall voltage gain is 10 V/V.

7.61 Figure P7.61 shows an alternative equivalent-circuit representation of an amplifier. If this circuit is to be equivalent to that in Fig. 7.34(b) show that $G_m = A_{vo}/R_o$. Also convince yourself that the transconductance G_m is defined as

$$G_{\scriptscriptstyle m} = \left. \frac{i_{\scriptscriptstyle o}}{v_{\scriptscriptstyle i}} \right|_{R_{\scriptscriptstyle I} = 0}$$

and hence is known as the short-circuit transconductance. Now, if the amplifier is fed with a signal source $(v_{\text{sig}}, R_{\text{sig}})$ and is connected to a load resistance R_L show that the gain of the amplifier proper A_v is given by $A_v = G_m(R_o \parallel R_L)$ and the overall voltage gain G_v is given by

$$G_v = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} G_m (R_o \parallel R_L)$$

Figure P7.61

7.62 An alternative equivalent circuit of an amplifier fed with a signal source $(v_{\rm sig}, R_{\rm sig})$ and connected to a load R_L is shown in Fig. P7.62. Here G_{vo} is the open-circuit overall voltage gain,

$$G_{vo} = \left. \frac{v_o}{v_{\rm sig}} \right|_{R_I = \infty}$$

- (b) Show that including R_{ϵ} reduces the magnitude of A_{M} by a certain factor. What is this factor?
- (c) Show that including R_e reduces f_L by the same factor as in (b) and thus one can use R_e to trade off gain for bandwidth.
- (d) For I=0.25 mA, $R_C=10$ k Ω , and $C_E=10$ μ F, find $|A_M|$ and f_L with $R_e=0$. Now find the value of R_e that lowers f_L by a factor of 10. What will the gain become? Sketch on the same diagram a Bode plot for the gain magnitude for both cases.

Section 10.2: Internal Capacitive Effects and the High-Frequency Model of the MOSFET and the BJT

10.13 Refer to the MOSFET high-frequency model in Fig. 10.12(a). Evaluate the model parameters for an NMOS transistor operating at $I_D=200~\mu\text{A}$, $V_{SB}=1~\text{V}$, and $V_{DS}=1.5~\text{V}$. The MOSFET has $W=20~\mu\text{m}$, $L=1~\mu\text{m}$, $t_{ox}=8~\text{nm}$, $\mu_n=450~\text{cm}^2/\text{V}\cdot\text{s}$, $\gamma=0.5~\text{V}^{1/2}$, $2\phi_f=0.65~\text{V}$, $\lambda=0.05~\text{V}^{-1}$, $V_0=0.7~\text{V}$, $C_{sb0}=C_{db0}=20~\text{fF}$, and $L_{ov}=0.05~\mu\text{m}$. [Recall that $g_{mb}=\chi g_m$, where $\chi=\gamma/(2\sqrt{2\phi_f+V_{SB}})$, and that $\epsilon_{ox}=3.45\times10^{-11}~\text{F/m}$.]

10.14 Find f_T for a MOSFET operating at $I_D = 200 \,\mu\text{A}$ and $V_{ov} = 0.3 \,\text{V}$. The MOSFET has $C_{gs} = 25 \,\text{fF}$ and $C_{gd} = 5 \,\text{fF}$.

10.15 Starting from the expression of f_T for a MOSFET,

$$f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd})}$$

and making the approximation that $C_{gs} \gg C_{gd}$ and that the overlap component of C_{gs} is negligibly small, show that

$$f_T \simeq \frac{1.5}{\pi L} \sqrt{\frac{\mu_n I_D}{2C_{ox} WL}}$$

Thus note that to obtain a high f_T from a given device, it must be operated at a high current. Also note that faster operation is obtained from smaller devices.

10.16 Starting from the expression for the MOSFET unity-gain frequency,

$$f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd})}$$

and making the approximation that $C_{gs} \gg C_{gd}$ and that the overlap component of C_{gs} is negligibly small, show that for an *n*-channel device

$$f_T \simeq \frac{3\mu_n V_{OV}}{4\pi L^2}$$

Observe that for a given channel length, f_T can be increased by operating the MOSFET at a higher overdrive voltage. Evaluate f_T for devices with $L=0.5~\mu\mathrm{m}$ operated at overdrive voltages of 0.2 V and 0.4 V. Use $\mu_n=450~\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}$.

10.17 It is required to calculate the intrinsic gain A_0 and the unity-gain frequency f_T of an *n*-channel transistor fabricated in a 0.13- μ m CMOS process for which $L_{ov}=0.1$ L, $\mu_n=400$ cm²/V·s, and $V_A'=5$ V/ μ m. The device is operated at $V_{ov}=0.2$ V. Find A_0 and f_T for devices with $L=L_{\min}$, $2L_{\min}$, $3L_{\min}$, $4L_{\min}$, and $5L_{\min}$. Present your results in a table. (Hint: For f_T , use the approximate expression $f_T\simeq \frac{3\mu_n V_{ov}}{4\pi L^2}$.)

10.18 A particular BJT operating at $I_C = 0.5$ mA has $C_{\mu} = 1$ pF, $C_{\pi} = 8$ pF, and $\beta = 100$. What are f_T and f_{β} for this situation?

10.19 For the transistor described in Problem 10.18, C_{π} includes a relatively constant depletion-layer capacitance

Transistor	I _E (mA)	$r_{\rm e}(\Omega)$	g_m (mA/V)	r_{x} (k Ω)	β_0	$f_T(MHz)$	C _µ (pF)	C _x (pF)	f _s (MHz)
(a) (b)	2	25			100	500	2	- _π (pι)	I _β (IVIIIZ)
(c) (d) (e)	10 0.1 1	25		2.5	100 100 100	500 500	2	10.7 10.7	4
(f) (g)					10	150 500 800	2 2 1	9	80

of 2 pF. If the device is operated at $I_C = 0.25$ mA, what does its f_T become?

10.20 An *npn* transistor is operated at $I_C = 1$ mA and $V_{CB} = 2$ V. It has $\beta_0 = 100$, $V_A = 50$ V, $\tau_F = 30$ ps, $C_{je0} = 20$ fF, $C_{\mu 0} = 30$ fF, $V_{0c} = 0.75$ V, $m_{CBJ} = 0.5$, and $r_x = 100$ Ω . Sketch the complete hybrid- π model, and specify the values of all its components. Also, find f_T .

10.21 Measurement of h_{fe} of an npn transistor at 50 MHz shows that $\left|h_{fe}\right|=10$ at $I_C=0.2$ mA and 12 at $I_C=1.0$ mA. Furthermore, C_{μ} was measured and found to be 0.1 pF. Find f_T at each of the two collector currents used. What must τ_F and C_{fe} be?

10.22 A particular small-geometry BJT has f_T of 10 GHz and $C_{\mu}=0.1$ pF when operated at $I_C=1.0$ mA. What is C_{π} in this situation? Also, find g_m . For $\beta=120$, find r_{π} and f_{β} .

10.23 For a BJT whose unity-gain bandwidth is 2 GHz and $\beta_0 = 200$, at what frequency does the magnitude of h_{fe} become 40? What is f_6 ?

*10.24 For a sufficiently high frequency, measurement of the complex input impedance of a BJT having (ac) grounded emitter and collector yields a real part approximating r_x . For what frequency, defined in terms of ω_{β} , is such an estimate of r_x good to within 10% under the condition that $r_x \le r_{\pi}/10$?

*10.25 Complete the table entries on the previous page for transistors (a) through (g), under the conditions indicated. Neglect r_r .

Section 10.3: High-Frequency Response of the CS and CE Amplifiers

10.26 In a particular common-source amplifier for which the midband voltage gain between gate and drain (i.e., $-g_m R_L'$) is -39 V/V, the NMOS transistor has $C_{gs} = 1.0$ pF and $C_{gd} = 0.1$ pF. What input capacitance would you expect? For what range of signal-source resistances can you expect the 3-dB frequency to exceed 1 MHz? Neglect the effect of R_G .

D 10.27 In the circuit of Fig. P10.27, the voltage amplifier is ideal (i.e., it has an infinite input resistance and a zero output resistance).

- (a) Use the Miller approach to find an expression for the input capacitance C_{in} in terms of A and C.
- (b) Use the expression for C_{in} to obtain the transfer function $V_o(s)/V_{sig}(s)$.

Figure P10.27

- (c) If $R_{\rm sig}=1~{\rm k}\Omega$, and the gain $V_o/V_{\rm sig}$ is to have a dc value of 40 dB and a 3-dB frequency of 100 kHz, find the values required for A and C.
- (d) Sketch a Bode plot for the gain and use it to determine the frequency at which its magnitude reduces to unity.

10.28 An ideal voltage amplifier having a voltage gain of -1000 V/V has a 0.2-pF capacitance connected between its output and input terminals. What is the input capacitance of the amplifier? If the amplifier is fed from a voltage source V_{sig} having a resistance $R_{\text{sig}} = 1 \text{ k}\Omega$, find the transfer function V_o/V_{sig} as a function of the complex-frequency variable s and hence the 3-dB frequency f_H and the unity-gain frequency f_L .

D 10.29 A design is required for a CS amplifier for which the MOSFET is operated at $g_m = 5$ mA/V and has $C_{gs} = 5$ pF and $C_{gd} = 1$ pF. The amplifier is fed with a signal source having $R_{sig} = 1$ k Ω , and R_G is very large. What is the largest value of R'_L for which the upper 3-dB frequency is at least 6 MHz? What is the corresponding value of midband gain and gain-bandwidth product? If the specification on the upper 3-dB frequency can be relaxed by a factor of 3, that is, to 2 MHz, what can A_M and GB become?

10.30 Reconsider Example 10.3 for the situation in which the transistor is replaced by one whose width W is half that of the original transistor while the bias current remains unchanged. Find modified values for all the device parameters along with A_M , f_H , and the gain-bandwidth product, GB. Contrast this with the original design by calculating the ratios of new value to old for W, V_{OV} , g_m , C_{gs} , C_{gd} , C_{in} , A_M , f_H , and GB.

D*10.31 In a CS amplifier, such as that in Fig. 10.3(a), the resistance of the source $R_{\rm sig} = 100 \, \rm k\Omega$, amplifier