PROBLEM SET #9

Issued: Friday, October 26, 2018

Due: Friday, November 2, 2018, at 12:00 noon via Gradescope.

- 1. Sedra & Smith, Problem 10.2
- 2. Sedra & Smith, Problem 10.6
- 3. Sedra & Smith, Problem 10.29
- **4.** For the amplifier in Figure PS9.1, assume that M_1 has the properties listed in Table PS9.1. First, find values for each of the MOSFET internal capacitances C_{GS} , C_{GD} , C_{DB} and C_{SB} assuming that the body terminal is grounded. Then find the voltage gain A_v , the current gain A_i , input and output resistances R_{in} & R_{out} , upper and lower corner frequencies f_L & f_H , and the maximum amplitude of the signal source v_S .

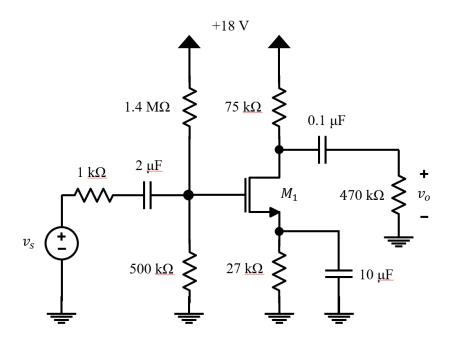


Figure PS9.1

VALUE	UNIT
10	μm
1	μm
450	$cm^2/(V \cdot s)$
0.5	$fF/\mu m^2$
1	V
0.05	μm
20	fF
20	fF
0.7	V
	10 1 450 0.5 1 0.05 20 20

Table PS9.1

5. For the amplifier in Figure PS9.2, assume that Q_1 has $\beta = 125$, $V_A = 50$ V, $C_{jc,0} = 1.0$ pF, $C_{je,0} = 3.5$ pF, $V_{bi,c} = 0.9$ V, $V_{bi,e} = 1.0$ V, and $\tau_F = 1$ ns. You should also calculate the collector-to-substrate capacitance C_{CS} assuming $C_{cs0} = 20$ fF and $V_{bi(collector-substrate)} = 0.65$ V. Find A_v , A_i , R_{in} , R_{out} , f_L , f_H and the maximum amplitude of the signal source v_S .

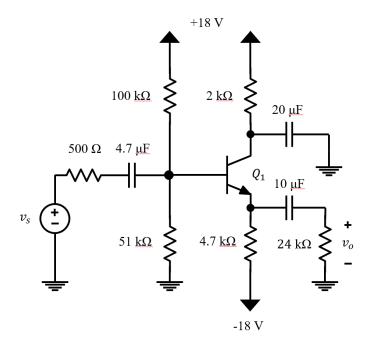


Figure PS9.2

6. For the amplifier in Figure PS9.3, assume that M_1 has $k_p = 200 \,\mu\text{A/V}^2$ and $V_{tp} = -1 \,\text{V}$. Find A_v , A_i , R_{in} , R_{out} and the maximum amplitude of the signal source v_s .

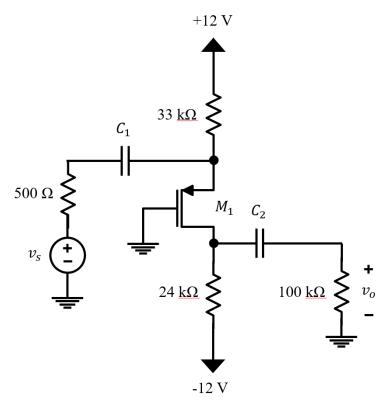


Figure PS9.3

- 7. A single-transistor amplifier is needed that has a gain of 52 dB and an input resistance of 1 $M\Omega$. What is the preferred choice of amplifier topology? Explain your reasoning for making this selection.
- 8. A single-transistor amplifier is needed that has a gain of approximately 0 dB and an input resistance of 25 M Ω with a load resistor of 10 k Ω . What is the preferred choice of amplifier topology? Explain your reasoning for making this selection.
- 9. A single-transistor amplifier is needed that has a gain of approximately +10 V/V and an input resistance of $2 \text{ k}\Omega$. What is the preferred choice of amplifier topology? Explain your reasoning for making this selection.