PROBLEM SET \#9

Issued: Friday, October 26, 2018
Due: Friday, November 2, 2018, at 12:00 noon via Gradescope.

1. Sedra \& Smith, Problem 10.2
2. Sedra \& Smith, Problem 10.6
3. Sedra \& Smith, Problem 10.29
4. For the amplifier in Figure PS9.1, assume that M_{1} has the properties listed in Table PS9.1. First, find values for each of the MOSFET internal capacitances $C_{G S}, C_{G D}, C_{D B}$ and $C_{S B}$ assuming that the body terminal is grounded. Then find the voltage gain A_{v}, the current gain A_{i}, input and output resistances $R_{\text {in }} \& R_{\text {out }}$, upper and lower corner frequencies $f_{L} \& f_{H}$, and the maximum amplitude of the signal source v_{s}.

Figure PS9.1

PARAMETER	VALUE	UNIT
W	10	$\mu \mathrm{~m}$
L	1	$\mu \mathrm{~m}$
μ_{n}	450	$\mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s})$
$C_{o x}{ }^{\prime \prime}$	0.5	$\mathrm{fF} / \mu \mathrm{m}^{2}$
$V_{t n}$	1	V
$L_{o v}$	0.05	$\mu \mathrm{~m}$
$C_{d b 0}$	20	fF
$C_{s b 0}$	20	fF
V_{0}	0.7	V

Table PS9.1
5. For the amplifier in Figure PS9.2, assume that Q_{1} has $\beta=125, V_{A}=50 \mathrm{~V}, C_{j c, 0}=1.0 \mathrm{pF}, C_{j e, 0}$ $=3.5 \mathrm{pF}, V_{b i, c}=0.9 \mathrm{~V}, V_{b i, e}=1.0 \mathrm{~V}$, and $\tau_{F}=1 \mathrm{~ns}$. You should also calculate the collector-tosubstrate capacitance $C_{C S}$ assuming $C_{c s 0}=20 \mathrm{fF}$ and $V_{b i(c o l l e c t o r-s u b s t r a t e) ~}=0.65 \mathrm{~V}$. Find $A_{v}, A_{i}, R_{\text {in }}, R_{\text {out }}, f_{L}, f_{H}$ and the maximum amplitude of the signal source v_{s}.

Figure PS9.2
6. For the amplifier in Figure PS9.3, assume that M_{1} has $k_{p}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{t p}=-1 \mathrm{~V}$. Find $A_{v}, A_{i}, R_{\text {in }}, R_{\text {out }}$ and the maximum amplitude of the signal source v_{s}.

Figure PS9.3
7. A single-transistor amplifier is needed that has a gain of 52 dB and an input resistance of 1 $\mathrm{M} \Omega$. What is the preferred choice of amplifier topology? Explain your reasoning for making this selection.
8. A single-transistor amplifier is needed that has a gain of approximately 0 dB and an input resistance of $25 \mathrm{M} \Omega$ with a load resistor of $10 \mathrm{k} \Omega$. What is the preferred choice of amplifier topology? Explain your reasoning for making this selection.
9. A single-transistor amplifier is needed that has a gain of approximately $+10 \mathrm{~V} / \mathrm{V}$ and an input resistance of $2 \mathrm{k} \Omega$. What is the preferred choice of amplifier topology? Explain your reasoning for making this selection.

