
- **8.48 The MOSFETs in the circuit of Fig. P8.48 are matched, having $k'_n(W/L)_1 = k'_p(W/L)_2 = 1 \text{ mA/V}^2$ and $|V_t| = 0.5 \text{ V}$. The resistance $R = 1 \text{ M}\Omega$.
- (a) For G and D open, what are the drain currents I_{D1} and I_{D2}?
 (b) For r_o = ∞, what is the voltage gain of the amplifier from G to D? (*Hint*: Replace the transistors with their small-signal models.)
- (c) For finite r_o(|V_A| = 20 V), what is the voltage gain from G to D and the input resistance at G?
 (d) If G is driven (through a large coupling capacitor) from a
- source v_{sig} having a resistance of 20 kΩ, find the voltage gain v_d/v_{sig}.
 (e) For what range of output signals do Q₁ and Q₂ remain in the seturation region?
- the saturation region?

Figure P8.48

a 100-k Ω resistance and is loaded with 1 k Ω , find the input resistance and the output resistance (excluding the load). Also find the overall voltage gain, both open-circuited and with load. Neglect the Early effect.

8.98 The BJTs in the Darlington follower of Fig. P8.98 have $\beta = 100$. If the follower is fed with a source having

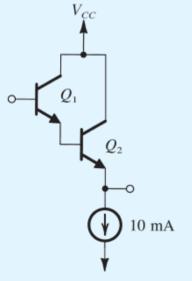


Figure P8.98