PROBLEM SET #10

Issued: Friday, November 8, 2019

Due: Friday, November 22, 2019, 12:00 noon via Gradescope.

- 1. Sedra & Smith, Problem 8.48.
- 2. Sedra & Smith, Problem 8.98.
- **3.** Find an expression for the small signal voltage gain of each circuit ($\lambda \neq 0$, $\gamma=0$).

4. Calculate the small signal voltage gain v_{out}/v_s , R_{in} , R_{out} , f_L and f_H for the following amplifier. M₁ and M₂ are identical. Parameters: W=200 μ m, L=1.2 μ m, μ n=450cm²/(Vs), Cox=0.5fF/ μ m², V_t=2V, L_{ov}=0.1 μ m, C_{db0}=20fF, C_{sb0}=20fF, V₀=0.7V, λ =0.02V⁻¹, γ =0.

5. Calculate the gain v_{out}/v_s , R_{in} , R_{out} , f_L and f_H for the following amplifier. BJT parameters: β =100, V_A =70V, $C_{jc,0}$ =20fF, $C_{je,0}$ =20fF, ϕ_j =0.7V, τ_F =350ps, $V_{BE,on}$ =0.7V. C_1 = C_3 = C_5 =1 μ F, C_2 = C_4 =0.1 μ F.

- 6. Repeat problem 5 for the gain v_{out}/v_s , R_{in} and R_{out} with C_2 and C_4 removed.
- 7. For the circuit shown below, Q_1 , Q_2 and Q_3 have the same properties, and Q_4 and Q_5 have the same properties. $V_{BE,on,Q1}=0.7V$, $V_{BE,on,Q4}=0.65V$. Solve for V_{REF} . Neglect early effect.

8. A common-gate amplifier is needed with an input resistance of 10Ω . Two *n*-channel MOSFETs are available: one with $K_n = 5 \text{ mA/V2}$ and the other with $K_n = 500 \text{ mA/V2}$. Both are capable of providing the desired value of R_{in} . Which one would be preferred and why?