**D 8.67** Design the CMOS cascode amplifier in Fig. 8.33 for the following specifications:  $g_{m1} = 1 \text{ mA/V}$  and  $A_v = -280 \text{ V/V}$ . Assume that for the available fabrication process,  $|V_A'| = 5 \text{ V/}\mu\text{m}$  for both NMOS and PMOS devices and that  $\mu_n C_{ox} = 4 \mu_p C_{ox} = 400 \mu\text{A/V}^2$ . Use the same channel length L for all devices and operate all four devices at  $|V_{ov}| = 0.25 \text{ V}$ . Determine the required channel length L, the bias current I, and the W/L ratio for each of four transistors. Assume that suitable bias voltages have been chosen, and neglect the Early effect in determining the W/L ratios.



Figure 8.33 A cascode amplifier with a cascode current-source load.

- 10.76 Consider a bipolar cascode amplifier biased at a current of 1 mA. The transistors used have  $\beta = 100$ ,  $r_o = 100 \text{ k}\Omega$ ,  $C_{\pi} = 10 \text{ pF}$ ,  $C_{\mu} = 2 \text{ pF}$ ,  $C_{cs} = 0$ , and  $r_{x} = 50 \Omega$ . The amplifier is fed with a signal source having  $R_{\text{sig}} = 5 \text{ k}\Omega$ . The load resistance  $R_{L} = 2 \text{ k}\Omega$ . Find the low-frequency gain  $A_{M}$ , and estimate the value of the 3-dB frequency  $f_{H}$ .
- **14.18** For a particular inverter design using a power supply  $V_{DD}$ ,  $V_{OL} = 0.1V_{DD}$ ,  $V_{OH} = 0.8V_{DD}$ ,  $V_{IL} = 0.4V_{DD}$ , and  $V_{IH} = 0.6 V_{DD}$ . What are the noise margins? What is the width of the transition region? For a minimum noise margin of 0.4 V, what value of  $V_{DD}$  is required?
- **16.43** Consider a ring oscillator consisting of five inverters, each having  $t_{PLH} = 3$  ns and  $t_{PHL} = 2$  ns. Sketch one of the output waveforms, and specify its frequency and the percentage of the cycle during which the output is high.