PROBLEM SET #2

Issued: Friday, September 06, 2019

Due: Friday, September 13, 2019, 12:00 noon via Gradescope.

- 1. Sedra & Smith, Problem 2.35
- 2. Sedra & Smith, Problem 2.48
- 3. Sedra & Smith, Problem 2.62
- **4.** Find an expression for V_o/V_i , input, and output impedances, in terms of R_1 , R_2 , and R_3 . The Opamps are ideal.

5. Find an expression for V_o/V_i in terms of R, R_1 , R_2 , R_3 , and R_4 . The Opamps are ideal.

6. Draw the phase and magnitude Bode plots of the circuit for the following component values: $R_1=10$ K Ω , $R_2=2$ K Ω , $R_3=5$ K Ω , C=3 μ F.

- 7. Create a SPICE netlist for the circuit shown below by following the procedures described in the handout "HSPICE Tutorial". Run a transient analysis. Attach the plot of V_o versus time for 5 periods. $R_L=1K\Omega$, $C=1\mu F$.
 - (a) What is the magnitude of the peak-to-peak voltage ripple across the load resistor R_L ?
 - (b) Suppose that the load resistor R_L and the input voltage are fixed, but the value of capacitor C varies. What value of capacitance C would you choose to reduce the output ripple to $0.5V \pm 0.01V$ peak-to-peak? (Estimate using hand analysis before you verify with simulation. Show your hand analysis.)

