PROBLEM SET \#2

Issued: Friday, September 06, 2019
Due: Friday, September 13, 2019, 12:00 noon via Gradescope.

1. Sedra \& Smith, Problem 2.35
2. Sedra \& Smith, Problem 2.48
3. Sedra \& Smith, Problem 2.62
4. Find an expression for V_{o} / V_{i}, input, and output impedances, in terms of R_{1}, R_{2}, and R_{3}. The Opamps are ideal.

5. Find an expression for V_{o} / V_{i} in terms of R, R_{1}, R_{2}, R_{3}, and R_{4}. The Opamps are ideal.

6. Draw the phase and magnitude Bode plots of the circuit for the following component values: $R_{1}=10 \mathrm{~K} \Omega, R_{2}=2 \mathrm{~K} \Omega, R_{3}=5 \mathrm{~K} \Omega, C=3 \mu \mathrm{~F}$.

7. Create a SPICE netlist for the circuit shown below by following the procedures described in the handout "HSPICE Tutorial". Run a transient analysis. Attach the plot of V_{o} versus time for 5 periods. $R_{L}=1 K \Omega, C=1 \mu F$.
(a) What is the magnitude of the peak-to-peak voltage ripple across the load resistor R_{L} ?
(b) Suppose that the load resistor R_{L} and the input voltage are fixed, but the value of capacitor C varies. What value of capacitance C would you choose to reduce the output ripple to $0.5 \mathrm{~V} \pm 0.01 \mathrm{~V}$ peak-to-peak? (Estimate using hand analysis before you verify with simulation. Show your hand analysis.)

