- **2.110** Measurements made on the internally compensated amplifiers listed below provide the dc gain and the frequency at which the gain has dropped by 20 dB. For each, what are the 3 dB and unity-gain frequencies?
- (a) 2×10^5 V/V and 5×10^2 Hz
- (b) $20 \times 10^5 \text{ V/V} \text{ and } 10 \text{ Hz}$
- (c) 1800 V/V and 0.1 MHz
- (d) 100 V/V and 0.1 GHz
- (e) 25 V/mV and 250 kHz

2.111 An inverting amplifier with nominal gain of -50 V/V employs an op amp having a dc gain of 10^4 and a unity-gain frequency of 10^6 Hz. What is the 3-dB frequency $f_{3\text{dB}}$ of the closed-loop amplifier? What is its gain at $0.1 f_{3\text{dB}}$ and at $10 f_{3\text{dB}}$?

- **D***2.117 This problem illustrates the use of cascaded closed-loop amplifiers to obtain an overall bandwidth greater than can be achieved using a single-stage amplifier with the same overall gain.
 - (a) Show that cascading two identical amplifier stages, each having a low-pass STC frequency response with a 3-dB frequency f_1 , results in an overall amplifier with a 3-dB frequency given by

 $f_{3dB} = \sqrt{\sqrt{2} - 1} f_1$

- (b) It is required to design a noninverting amplifier with a dc gain of 40 dB utilizing a single internally compensated op amp with $f_t = 2$ MHz. What is the 3-dB frequency obtained?
- (c) Redesign the amplifier of (b) by cascading two identical noninverting amplifiers each with a dc gain of 20 dB. What is the 3-dB frequency of the overall amplifier? Compare this to the value obtained in (b) above.

2.124 For operation with 10-V output pulses with the requirement that the sum of the rise and fall times represent only 20% of the pulse width (at half-amplitude), what is the slew-rate requirement for an op amp to handle pulses 2 μ s wide? (*Note:* The rise and fall times of a pulse signal are usually measured between the 10%- and 90%-height points.)

2.126 For an amplifier having a slew rate of 40 V/ μ s, what is the highest frequency at which a 20-V peak-to-peak sine wave can be produced at the output?