- **3.25** For a particular junction for which  $C_{j0} = 0.4$  pF,  $V_0 = 0.75$  V, and m = 1/3, find  $C_j$  at reverse-bias voltages of 1 V and 10 V.
- **3.26** The junction capacitance  $C_j$  can be thought of as that of a parallel-plate capacitor and thus given by

$$C_j = \frac{\epsilon A}{W}$$

Show that this approach leads to a formula identical to that obtained by combining Eqs. (3.43) and (3.45) [or equivalently, by combining Eqs. (3.47) and (3.48)].

$$\alpha = A \sqrt{2\epsilon_s q \frac{N_A N_D}{N_A + N_D}} \tag{3.43}$$

This incremental-capacitance approach turns out to be quite useful in electronic circuit design, as we shall see throughout this book.

Using Eq. (3.44) together with Eq. (3.42) yields

$$C_j = \frac{\alpha}{2\sqrt{V_0 + V_R}} \tag{3.45}$$

The value of  $C_j$  at zero reverse bias can be obtained from Eq. (3.45) as

$$C_{j0} = \frac{\alpha}{2\sqrt{V_0}} \tag{3.46}$$

which enables us to express  $C_j$  as

$$C_{j} = \frac{C_{j0}}{\sqrt{1 + \frac{V_{R}}{V_{0}}}} \tag{3.47}$$

where  $C_{j0}$  is given by Eq. (3.46) or alternatively if we substitute for  $\alpha$  from Eq. (3.43) by

$$C_{j0} = A\sqrt{\left(\frac{\epsilon_s q}{2}\right)\left(\frac{N_A N_D}{N_A + N_D}\right)\left(\frac{1}{V_0}\right)}$$
(3.48)

**D** 4.37 Assuming the availability of diodes for which  $v_D = 0.75 \text{ V}$  at  $i_D = 1 \text{ mA}$ , design a circuit that utilizes four diodes connected in series, in series with a resistor R connected to a 15-V power supply. The voltage across the string of diodes is to be 3.3 V.

**4.43** For the circuits in Fig. P4.9, using the constant-voltage-drop ( $V_D = 0.7 \text{ V}$ ) diode model, find the values of the labeled currents and voltages.



- **5.23** An NMOS transistor, fabricated with  $W = 20 \,\mu\text{m}$  and  $L = 1 \,\mu\text{m}$  in a technology for which  $k_n' = 100 \,\mu\text{A/V}^2$  and  $V_t = 0.8 \,\text{V}$ , is to be operated at very low values of  $v_{DS}$  as a linear resistor. For  $v_{GS}$  varying from 1.0 V to 4.8 V, what range of resistor values can be obtained? What is the available range if
- (a) the device width is halved?
- (b) the device length is halved?
- (c) both the width and length are halved?

|      | Voltage (V) |                       |                       |                        |                        |                        |                     |
|------|-------------|-----------------------|-----------------------|------------------------|------------------------|------------------------|---------------------|
| Case | <b>V</b> s  | <b>V</b> <sub>G</sub> | <b>V</b> <sub>D</sub> | <b>V</b> <sub>GS</sub> | <b>V</b> <sub>ov</sub> | <b>V</b> <sub>DS</sub> | Region of operation |
|      |             |                       |                       |                        |                        |                        |                     |
| a    | +1.0        | +1.0                  | +2.0                  |                        |                        |                        |                     |
| b    | +1.0        | +2.5                  | +2.0                  |                        |                        |                        |                     |
| с    | +1.0        | +2.5                  | +1.5                  |                        |                        |                        |                     |
| d    | +1.0        | +1.5                  | 0                     |                        |                        |                        |                     |
| e    | 0           | +2.5                  | +1.0                  |                        |                        |                        |                     |
| f    | +1.0        | +1.0                  | +1.0                  |                        |                        |                        |                     |
| g    | -1.0        | 0                     | 0                     |                        |                        |                        |                     |
| h    | -1.5        | 0                     | 0                     |                        |                        |                        |                     |
| i    | -1.0        | 0                     | +1.0                  |                        |                        |                        |                     |
| j    | +0.5        | +2.0                  | +0.5                  |                        |                        |                        |                     |

\*5.27 The table above lists 10 different cases labeled (a) to (j) for operating an NMOS transistor with  $V_t = 1$  V. In each case the voltages at the source, gate, and drain (relative to the circuit ground) are specified. You are required to complete the table entries. Note that if you encounter a case for which  $v_{DS}$  is negative, you should exchange the drain and source before solving the problem. You can do this because the MOSFET is a symmetric device.

- 5.24 When the drain and gate of a MOSFET are connected together, a two-terminal device known as a "diode-connected transistor" results. Figure P5.24 shows such devices obtained from MOS transistors of both polarities. Show that
- (a) the i-v relationship is given by

$$i = \frac{1}{2}k'\frac{W}{L}(v - |V_t|)^2$$

(b) the incremental resistance r for a device biased to operate at  $v = |V_t| + V_{ov}$  is given by

$$r \equiv 1 / \left[ \frac{\partial i}{\partial v} \right] = 1 / \left( k' \frac{W}{L} V_{OV} \right)$$

