PROBLEM SET \#5

Issued: Friday, September 27, 2019
Due: Friday, October 4, 2019 at 12:00 noon via Gradescope.

1. Sedra \& Smith, Problem 3.25
2. Sedra \& Smith, Problem 3.26
3. Given a $p n$ junction with doping $N_{A}=10^{17} \mathrm{~cm}^{-3}, N_{D}=10^{16} \mathrm{~cm}^{-3}$, cross-sectional area, $A=200 \mu \mathrm{~m}^{2}, n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}$, diffusion lengths $L_{p}=4 \mu \mathrm{~m} \& L_{n}=12 \mu \mathrm{~m}$, and diffusion constants $D_{p}=8 \mathrm{~cm}^{2} / \mathrm{s} \& D_{n}=20 \mathrm{~cm}^{2} / \mathrm{s}$, find I_{S}. If a forward voltage $V=$ 800 mV is applied across this junction, what is the resulting forward current?
4. Sedra \& Smith, Problem 4.37
5. Sedra \& Smith, Problem 4.43
6. Sedra \& Smith, Problem 5.23
7. Sedra \& Smith, Problem 5.27

For problems 8 and 9 below, use the parameters in Table PS5.1 as needed.

PARAMETER	NMOS VALUE	PMOS VALUE	UNIT
$V_{t 0}$	0.75	-0.75	V
γ	0.75	0.5	$\sqrt{\mathrm{~V}}$
$2 \phi_{f}$	0.6	0.6	V
K^{\prime}	25	10	$\mu \mathrm{~A} / \mathrm{V}^{2}$

Table PS5.1
8. Identify the source, drain, gate and bulk terminals, and find the current I in the transistors in Figure PS5.1. Assume $V_{t n}=0.75 \mathrm{~V}$.

Figure PS5.1
9. Consider transistors operating in their linear regions for the questions below.
(a) What is the W / L ratio required for an NMOS transistor to have an on-resistance of $2 \mathrm{k} \Omega$ when $V_{G S}=5 \mathrm{~V}$ and $V_{S B}=0 \mathrm{~V}$?
(b) Repeat for a PMOS transistor with $V_{G S}=-5 \mathrm{~V}$ and $V_{S B}=-3 \mathrm{~V}$.
10. Sedra \& Smith, Problem 5.24

