PROBLEM SET #5

Issued: Friday, September 27, 2019

Due: Friday, October 4, 2019 at 12:00 noon via Gradescope.

- 1. Sedra & Smith, Problem 3.25
- 2. Sedra & Smith, Problem 3.26
- **3.** Given a *pn* junction with doping $N_A = 10^{17} \text{ cm}^{-3}$, $N_D = 10^{16} \text{ cm}^{-3}$, cross-sectional area, $A = 200 \text{ }\mu\text{m}^2$, $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$, diffusion lengths $L_p = 4 \text{ }\mu\text{m} \text{ }\& L_n = 12 \text{ }\mu\text{m}$, and diffusion constants $D_p = 8 \text{ cm}^2/\text{s} \text{ }\& D_n = 20 \text{ cm}^2/\text{s}$, find I_S . If a forward voltage V = 800 mV is applied across this junction, what is the resulting forward current?
- 4. Sedra & Smith, Problem 4.37
- 5. Sedra & Smith, Problem 4.43
- 6. Sedra & Smith, Problem 5.23
- 7. Sedra & Smith, Problem 5.27

For problems 8 and 9 below, use the parameters in Table PS5.1 as needed.

PARAMETER	NMOS VALUE	PMOS VALUE	UNIT
V_{t0}	0.75	-0.75	V
γ	0.75	0.5	\sqrt{V}
$2\phi_f$	0.6	0.6	V
K'	25	10	$\mu A/V^2$

Table PS5.1

EE 105

8. Identify the source, drain, gate and bulk terminals, and find the current *I* in the transistors in Figure PS5.1. Assume $V_{tn} = 0.75$ V.

- 9. Consider transistors operating in their linear regions for the questions below.
 - (a) What is the W/L ratio required for an NMOS transistor to have an on-resistance of 2 k Ω when $V_{GS} = 5$ V and $V_{SB} = 0$ V?
 - (b) Repeat for a PMOS transistor with $V_{GS} = -5$ V and $V_{SB} = -3$ V.
- 10. Sedra & Smith, Problem 5.24