PROBLEM SET \#6

Issued: Friday, October 4, 2019
Due: Friday, October 18, 2019, 12:00 noon via Gradescope.

1. Sedra \& Smith, Problem 5.49
2. Sedra \& Smith, Problem 5.50
3. The cross-section and top-view of an NMOS transistor are shown below. The length of the channel is $5 \mu \mathrm{~m}$. The width of the channel changes linearly from $1 \mu \mathrm{~m}$ at the source to $0.3 \mu \mathrm{~m}$ at the drain. Derive the expression for the device current when operating in the saturation region as a function of $\mu_{n}, C_{o x}, V G S, V_{D S}$ and $V_{t h}$. Assume $\lambda=0$.

Cross-section view

4. In the following circuit, find V_{G} to set $V_{D}=8 V$. Device parameters: $K^{\prime}=100 \mu A / V^{2}, V_{T}=0.7 \mathrm{~V}$, $2 \varphi_{F}=0.6 \mathrm{~V}, \gamma=0.75 \sqrt{ } \mathrm{~V}$.

5. (a) Calculate the on-resistance for an NMOS transistor having $W / L=100 / 1$ and operating with $V G S=5 \mathrm{~V}$ and $V T N=0.75 \mathrm{~V}$. (b) Repeat for a similar PMOS transistor with $V G S=-5 \mathrm{~V}$ and $V T P=-0.75 \mathrm{~V}$. (c) What W / L is required for the PMOS transistor to have the same $R_{o n}$ as the NMOS transistor in (a)?
6. What is the impedance between V_{1} and V_{2} under following conditions. Device parameters: $K^{\prime}=100 \mu \mathrm{~A} / V^{2}, V_{T}=0.7 \mathrm{~V}$.
(a) $V_{l}=0 \mathrm{~V}, V_{C l}=5 \mathrm{~V}, V_{C 2}=0 \mathrm{~V}$.
(b) $V_{l}=2.5 \mathrm{~V}, V_{C l}=5 \mathrm{~V}, V_{C 2}=1 \mathrm{~V}$.
(c) $V_{l}=2.5 \mathrm{~V}, V_{C l}=2.5 \mathrm{~V}, V_{C 2}=5 \mathrm{~V}$.

7. Indicate the region of operation for an npn transistor biased as follows:
(a) $V_{B E}=-5.0 \mathrm{~V}, V_{B C}=0.7 \mathrm{~V}$.
(b) $V_{B E}=-5.0 \mathrm{~V}, V_{B C}=-5.0 \mathrm{~V}$.
(c) $V_{B E}=0.7 V, V_{B C}=0.7 V$.
(d) $V_{B E}=0.7 \mathrm{~V}, V_{B C}=-5.0 \mathrm{~V}$.
8. Indicate the region of operation for a pnp transistor biased as follows:
(a) $V_{E B}=0.7 V, V_{C B}=0.7 V$.
(b) $V_{E B}=0.7 V, V_{C B}=-0.65$.
(c) $V_{E B}=-0.65 \mathrm{~V}, V_{C B}=0.7 \mathrm{~V}$.
(d) $V_{E B}=-0.65 \mathrm{~V}, V_{C B}=-0.65 \mathrm{~V}$.
9. Sedra \& Smith, Problem 6.28
10. Sedra \& Smith, Problem 6.56
11. Find the transistor operating points, V_{C}, and V_{E} in the following circuits. $\beta=50, V_{B E}=0.7 \mathrm{~V}$.

