PROBLEM SET #7

Issued: Friday, October 18, 2019

Due: Friday, October 25, 2019, at 12:00 noon via Gradescope.

- 1. What collector current is required for a bipolar transistor to achieve a transconductance of 25 mS?
- 2. What is the collector bias current, I_c which yields $r_{\pi} = 5 \text{ k}\Omega$ for a bipolar transistor with $\beta = 125$? What are the approximate values of g_m and r_o if $V_A = 100$ V?
- 3. A circuit requires the use of a transistor with a transconductance of 250 mS. A bipolar transistor with $\beta_{DC} = 100$ and a MOSFET with $K_n = 25 \text{ mA/V}^2$ are available. Which transistor would be preferred and why?
- 4. Sedra & Smith, Problem 7.92
- 5. Sedra & Smith, Problem 7.94
- 6. The circuit in Figure PS7.1 below illustrates a simple biasing method where a large feedback resistor, R_G connects the drain and gate of an NMOS transistor. If $V_{DD} = 3 \text{ V}$, $k'_n = 25 \,\mu\text{A}/\text{V}^2$, $V_{tn} = 0.7 \text{ V}$, and $R_G = 1 \text{ M}\Omega$, design the circuit below to have a bias current I_D of 500 μ A. Pick a standard 5% resistor value for R_D , and find the actual current I_D and the drain voltage V_D .

Figure PS7.1

- 7. Sedra & Smith, Problem 7.108
- 8. Sedra & Smith, Problem 7.24
- 9. Sedra & Smith, Problem 7.33