7.43 A BJT is biased to operate in the active mode at a dc collector current of 1 mA. It has a β of 100 and V_A of 100 V.

Give the four small-signal models (Figs. 7.25 and 7.27) of the BJT complete with the values of their parameters.

 $v_{i} \stackrel{+}{\longleftarrow} 100 \text{ k}\Omega$ $R_{E} = 3.6 \text{ k}\Omega$

*7.58 The transistor in the circuit shown in Fig. P7.58 is

biased to operate in the active mode. Assuming that β is very

large, find the collector bias current I_c . Replace the transistor

with the small-signal equivalent-circuit model of Fig. 7.26(b)

(remember to replace the dc power supply with a short circuit).

Analyze the resulting amplifier equivalent circuit to show that

 $\frac{v_{o1}}{v_i} = \frac{R_E}{R_E + r_e}$

 $\frac{v_{o2}}{v_i} = \frac{-\alpha R_C}{R_E + r_c}$

= = = = = = = Figure P7.58

Find the values of these voltage gains (for $\alpha \simeq 1$). Now, if the terminal labeled v_{o1} is connected to ground, what does the voltage gain v_{o2}/v_i become?

10.21 Measurement of h_{fe} of an *npn* transistor at 50 MHz shows that $|h_{fe}| = 10$ at $I_C = 0.2$ mA and 12 at $I_C = 1.0$ mA.

Furthermore, C_{μ} was measured and found to be 0.1 pF. Find f_T at each of the two collector currents used. What must τ_F

and C_{ie} be?

10.22 A particular small-geometry BJT has f_T of 10 GHz

and $C_{\mu} = 0.1$ pF when operated at $I_C = 1.0$ mA. What is C_{π}

in this situation? Also, find g_m . For $\beta = 120$, find r_{π} and f_{β} .

*10.25 Complete the table entries on the previous page for transistors (a) through (g), under the conditions indicated.

Neglect $r_{\rm v}$.

Transistor	I _E (mA)	$r_{\rm e}(\Omega)$	g _m (mA/V)	$r_{_{\pi}}$ (k Ω)	β_0	f_T (MHz)	<i>C_μ</i> (pF)	<i>C</i> _π (pF)	$f_{\scriptscriptstyleeta}(MHz)$
(a)	2				100	500	2		
(b)		25					2	10.7	4
(c)				2.5	100	500		10.7	
(d)	10				100	500	2		
(e)	0.1				100	150	2		
(f)	1				10	500	2		
(g)						800	1	9	80