PROBLEM SET \#8

Issued: Friday, October 25, 2019
Due: Friday, November 1, 2019, 12:00 noon via Gradescope.

1. Sedra \& Smith, Problem 7.43
2. Sedra \& Smith, Problem 7.58
3. Sedra \& Smith, Problem 10.21
4. Sedra \& Smith, Problem 10.22
5. Sedra \& Smith, Problem 10.25
6. In the following circuit (biasing circuit not shown), derive an expression for the small signal resistances R_{1} and R_{2} for: (a) $V_{A}=\infty$, (b) $V_{A} \neq \infty$.

7. The following circuit is a CE amplifier with a feedback resistor R_{F}. Determine the gain v_{o} / v_{S}. $V_{A}=100 \mathrm{~V}, \beta_{F}=100, V_{C C}=12 \mathrm{~V}, V_{E E}=-12 \mathrm{~V}, R_{s}=1 \mathrm{k} \Omega, R_{1}=10 \mathrm{k} \Omega, R_{2}=5 \mathrm{k} \Omega, R_{3}=24 \mathrm{k} \Omega$, $R_{E}=4 k \Omega, R_{C}=6 k \Omega, R_{F}=20 k \Omega$.

8. A BJT with $C_{\mu 0}=2 p F$ is biased at an operating point of $(2 \mathrm{~mA}, 5 \mathrm{~V})$. What is the forward-transit time τ_{F} if $f_{T}=500 \mathrm{MHz}, \phi_{j c}=0.9 \mathrm{~V}$, and $C_{j e}=7 p F$?
