
D 10.1 For the amplifier in Fig. 10.3(a), if $R_{G1} = 2 \text{ M}\Omega$, $R_{G2} = 1 \text{ M}\Omega$, and $R_{\text{sig}} = 200 \text{ k}\Omega$, find the value of the coupling capacitor C_{C1} (specified to one significant digit) that places the associated pole at 10 Hz or lower.

D 10.3 The amplifier in Fig. 10.3(a) is biased to operate at $g_m = 5 \text{ mA/V}$, and $R_S = 1.8 \text{ k}\Omega$. Find the value of C_S (specified to one significant digit) that places its associated pole at 100 Hz or lower. What are the actual frequencies of the pole and zero realized?

D 10.7 Figure P10.7 shows a current-biased CE amplifier operating at 100 μ A from ± 3 -V power supplies. It employs

 $R_C = 20 \text{ k}\Omega$, $R_B = 200 \text{ k}\Omega$, and operates between a $20\text{-k}\Omega$ source and a $10\text{-k}\Omega$ load. The transistor $\beta = 100$. Select C_E first, for a minimum value specified to one significant digit and providing up to 80% of f_L where f_L is to be 100 Hz. Then choose C_{C1} and C_{C2} , each specified to one significant digit, and each contributing about 10% of f_L . What f_L results? What total capacitance is needed?

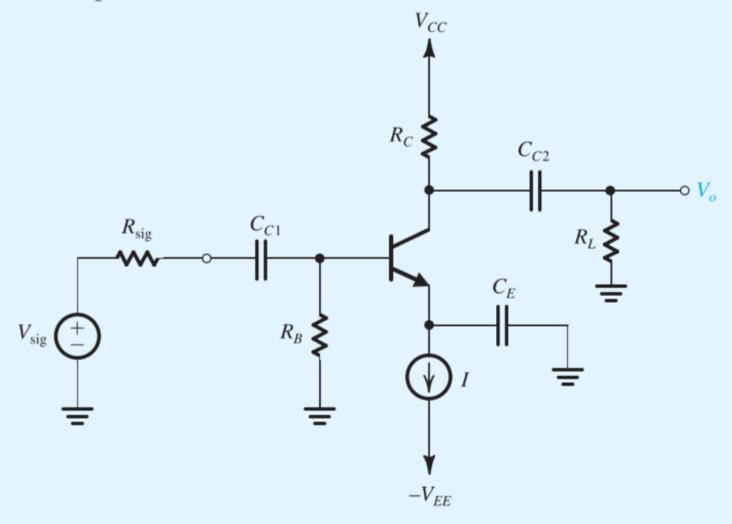


Figure P10.7

D *10.31 In a CS amplifier, such as that in Fig. 10.3(a), the resistance of the source $R_{\rm sig} = 100 \, \rm k\Omega$, amplifier input resistance (which is due to the biasing network) $R_{\rm in} = 100 \, \rm k\Omega$, $C_{gs} = 1 \, \rm pF$, $C_{gd} = 0.2 \, \rm pF$, $g_m = 3 \, \rm mA/V$, $r_o = 50 \, \rm k\Omega$, $R_D = 8 \, \rm k\Omega$, and $R_L = 10 \, \rm k\Omega$. Determine the expected 3-dB cutoff frequency f_H and the midband gain. In evaluating ways to double f_H , a designer considers the alternatives of changing either R_L or $R_{\rm in}$. To raise f_H as described, what separate change in each would be required? What midband voltage gain results in each case?