EE 105 | Lab 1

Review of Passive Networks

...aka, How Does an Oscilloscope Probe Work?

Prelab Review

Basic low pass filter

- Frequency domain transfer function:

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{1}{1 + sRC}$$

Where we can define the time constant, $\tau = RC [sec]$

and the pole frequency, $\omega_p = \frac{1}{RC} \left[\frac{rad}{sec} \right]$

- In the time domain:

$$V_o(t) = V_I \left(1 - e^{-t/RC} \right)$$

Where V_I indicates the magnitude of an input step function,

and the rise time $t_r = t_{0.9V_I} - t_{0.1V_I} \approx 2.197\tau$

Coaxial Parasitics

Prelab Review

- Any measurement tool is really a circuit
 - May seem obvious, but this means you are changing your circuit when you connect it to a tool!
 - This circuit consists of both intentionally chosen elements and *parasitics*
 - Most AC circuits will benefit from measurement with coaxial cables
 - Protection from electromagnetic interference (EMI)
 - Low loss in transmission line applications
 - Large parasitic capacitance!

Oscilloscope Loading

Prelab Review

- Our oscilloscopes use coaxial probes with high input impedance
 - This capacitively loads any circuit we want to measure!

Loading Effects on Rise Time

Prelab Review

 $=\frac{R_{osc}}{R_{osc}+R_{buff}}$

Q: If the probe capacitance introduces 100% error, how can it measure any arbitrary response accurately?*A:* Clever circuit design!

By using a buffer resistor in series with the input, the effective voltage across C_2 is reduced by the voltage divider ratio

This means for a given step/cycle, much less charge needs to be stored on $C_2 \rightarrow$ **faster response!**

Compensated Attenuators

Prelab Review

Problem: R_{buff} actually increases the rise time of the oscilloscope circuit through the resistive component of τ

$$\tau_{osc} = (R_{osc} \mid\mid R_{buff})C_2$$

Solution: "Compensate" the probe by creating a parallel path at high frequencies

Compensated Attenuators

Prelab Review

- At low frequencies, we have a resistive divider (i.e., attenuator)

•
$$V_o = \frac{R_2}{R_1 + R_2} V_i$$

- At high frequencies, we have a capacitive divider (the capacitor impedances will be much lower than $R_1 \& R_2$ resistances)

If $C_1 = \frac{R_2}{R_1}C_2$, we will have the same transfer function across all frequencies, giving us a theoretical rise time of 0!

Practical Considerations

Prelab Review

- Previous analysis depends on precisely picking the value of C_1 based on $R_1, R_2 \& C_2 \rightarrow$ these values cannot be reliably controlled or predicted
- Real oscilloscope probes allow for adjustment of C_1 (variable capacitor) to precisely tune the network
- We will use variable resistors instead...how could this work?

One more thing...

Lab Overview

- Lab equipment
- Breadboard circuits

Lab Equipment

- Arbitrary Function Generator

 Agilent 33120A
- Digital Oscilloscope
 - Agilent DSO5014A

Use proper cables!

Arbitrary Function Generator

- Generates arbitrary waveforms
 - Sinusoidal
 - Square
 - Triangle
 - Piecewise

Arbitrary Function Generator

FF 105 | K Peleaux | Fall 2019

Arbitrary Function Generator

- Frequency Range

 ~15 MHz
- Output Impedance
 - Figure it out!

Digital Oscilloscope

Probe Compensation

Channels

Digital Oscilloscope

- Need to compensate probes
 - Otherwise your measurement will be incorrect

Breadboard Circuits

- Proto-board
 - 'Bread-board'

Breadboard Circuits

Proto-board wiring

- Short wires
- Short legs
- Clear and Clean

