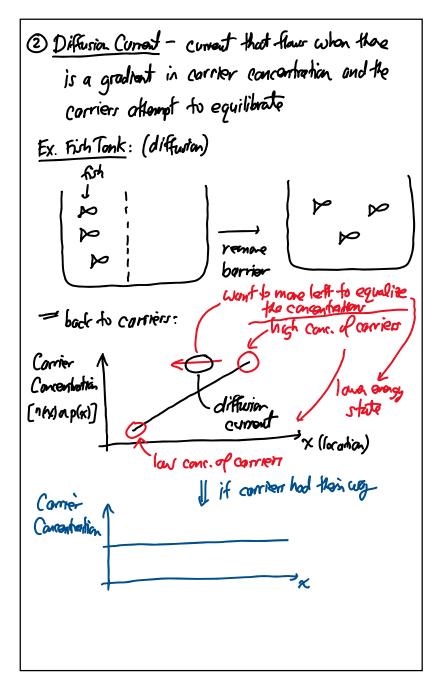

CTN 9/23/19



m U – 3 e⁻'s from B not enough to complete the valence shell \rightarrow leaves a hole, h⁺ (Z) - h⁺=absence of e⁻ = hole – e^- can move into this h^+ , creating another h^+ 3 - h^+ 's propogate this way under an applied electric field, generating current • The larger the concentration of acceptors N_A , the greater the number of h⁺'s available for current, i.e., the better the conductor P=#free ht ~ NA (cm-3] • Thus, we can convert a semiconductor to a conductor by doping w/ donors (which generate an e⁻ cloud) or doping w/ acceptors (which generate a h⁺ cloud) \cdot n_i = concentration of free e^{-'}s in intrinsic (undoped) Si = 1.45×1010 cm-3 ~ af room temporature \cdot p = n = n; in intrinsic silicon • As a rule of thumb, at any given location at equilibrium, pn = $n_i^2 = (1.45 \times 10^{10})^2$ If a region is doped predominantly one type (p or n), then the carrier concentrations are as follows: Predominantly n-type $(N_0 >> N_A)$: $n \equiv N_0 \rightarrow p \cdot \frac{n_A^2}{N_0}$ Predominishing p-type $(N_A >> N_0)$: $p^2 N_A \rightarrow n = \frac{n_i^2}{n_i^2}$

drift = qn/h E [A/on2] - Drift current for e's under electivic field & for ht: $J_{p}^{dniff} = Q_{p} N_{p} = (tqp)(t\mu_{p} E) = qp\mu_{p} E = J_{p}^{dniff}$ charge donsity relacity of ~250 cm²/V:s of ht's [Clam³] ht's [cm/s] And the total drift currect: Juit John + John + g(nun + pup) E= OE 0= conductivity= 2(nun+pup)= + resistivity Resistance = -Ŵ => thus, resistance is basically a drift Current phenomenan

= Diffusion current is propertional to the regather of the carrier gradient: ht diffusion: $\mathcal{J}_{p}^{\text{diff}} = (+q) \mathcal{D}_{p} \left(-\frac{\partial p}{\partial x} \right) = -q \mathcal{D}_{p} \frac{\partial p}{\partial x} \quad \left[A/cm^{2} \right]$ temportine e-diffusion: $J_{h}^{\text{diff}_{e}}$ (-q) $D_{h}\left(-\frac{\partial h}{\partial \kappa}\right) = + 2D_{h}\frac{\partial h}{\partial x}$ [A/cm²] Botterann Cart. $D_n = diffusivity = \mu_n \frac{kT}{q} = \mu_n H_n H_T$ Do= h+ diffusivity = Mp KT= Mp VT @ 25°C The total current @ location x: Jtot = Jtot + Jtot 1 Jo^{diff} + Jo^{diff}

Copyright © 2019 Regents of the University of California