Announcements:

Lecture 25: High Frequency Circuit Analysis

• HW#8 online and due Friday via Gradescope

Lab#5 due Tuesday, Nov. 12, 5 p.m. • This is a recorded video, since the PG&E shutdown forced class cancellation on Monday, 10/28 • Lecture Topics: A MOS High Frequency Model ♦ Brute Force CE HF Analysis & Open Circuit Time Constant (OCTC) Analysis Last Time: • Covered BJT high frequency model • Now, continue with MOS high frequency model ...

Gate-to-Source Capacitor, Cgs: (saturated MOS)
$C_{gs} = C_{oL} + \frac{2}{3} W L_{eff} C_{ex}$
e accounts for the fact that the
who can inversion charge is only under
a portion of the gate
Gate-to-Drain Capacitane, Cgd:
Cgd = Col (no inversion charge near the
N drain in the saturation region)
 Source/Drain Junction Capacitance, C_{sb} & C_{db}:
 These are depletion capacitors associated with bulk-to-drain and bulk-to-source projunctions
 Bottom capacitance per unit area differs from
sidewall capacitance due to higher p+ bulk doping at
 The higher doping is near the silicon surface and
designed to raise the threshold voltage in field
& This way unwanted inversion does not occur in
the field regions for metal
• Take drain capacitance as an example:
1 Part of the bottom side
$p+5\lambda$ P_{1} P_{1} P_{2} P_{2} P_{3}
sidewale
outside
$ \begin{array}{c} \nabla \Box \Box \Box \Box \\ = W + 2(52) \end{array} $

Copyright © 2019 Regents of the University of California

 $\frac{\text{KCLO}: N_{s} - N_{be}}{R_{s}} = \frac{N_{be}}{F_{TT} \Pi R_{BB}} + N_{be} (sC_{TT}) + (N_{be} - N_{o})(sC_{Je})$ $\frac{\text{KCLO}: (N_{be} - N_{o})(sC_{Ju}) = g_{m}N_{be} + \frac{N_{o}}{R_{o} \Pi R_{L}} = g_{m}N_{be} + R''$ $\sum [R'' = R_{o} \Pi R_{L}]$ TE"= PONEL] Reamange: $\frac{N_{s}}{R_{s}} = N_{be} \left[\frac{1}{R_{s}} + \frac{1}{\Gamma_{H} R_{BB}} + S \left(C_{H} + C_{\mu} \right) \right] - N_{o} \left(s C_{\mu} \right)$ $\frac{1}{r_{\pi} ||R_{s}||R_{sg}} = \frac{1}{R'} \left[R'^{2} r_{\pi} ||R_{s}||R_{gg} \right]$mark..., $\frac{(1-S\frac{C_{u}}{9m})}{(1+S[R'(C_{T}+C_{u})+R''C_{u}+g_{u}S_{u}R'R''])}$ + S²R'R''C_{T}S_{u}} $\frac{N_{\rm B}}{N_{\rm S}}(5) = -\frac{G_{\rm m}R'R'}{R_{\rm S}}$ F4(5) AM N -gm (VITIRBB) (Voli PellRe) Rst InliPBB models the freq response Constant = miclband gaih *

$$\frac{1}{2} \int \frac{1-s \frac{G_{LL}}{g_{m}}}{1+s[R'(C_{m}+G_{A})+R'G_{A}+g_{m}G_{A},R'R'']+s^{2}R'R''C_{m}G_{A}}$$

$$= \frac{1-\frac{s}{2_{L}}}{(1-\frac{s}{p_{1}})(1-\frac{s}{p_{2}})} = \frac{1+\frac{s}{\omega_{2}}}{(1+\frac{s}{\omega_{p}})(1+\frac{s}{\omega_{p}})} = \frac{N(s)}{N(s)}$$

$$\frac{2cras:}{\Rightarrow identify a RHP 2ero: } z_{i} = \pm \frac{g_{im}}{G_{A}} \rightarrow \omega_{2} = \frac{g_{im}}{G_{A}}$$

$$Note that g_{im} \rightarrow \omega_{+} (since g_{im} \rightarrow g_{im})$$

$$\int \omega_{2} is a very high fire_{1}, and c_{17} \rightarrow c_{2}$$

$$\int c_{an} ignore relative to the lower freq. poles$$

Copyright © 2019 Regents of the University of California

Copyright © 2019 Regents of the University of California

