CONTENTS

Tables xvi
“Expand-Your-Perspective” Notes xvii
Preface xix

PART I ~ DEVICES AND BASIC CIRCUITS ~ 2

1 Signals and Amplifiers ~ 4
 Introduction ~ 5
 1.1 Signals ~ 6
 1.2 Frequency Spectrum of Signals ~ 9
 1.3 Analog and Digital Signals ~ 12
 1.4 Amplifiers ~ 15
 1.4.1 Signal Amplification ~ 15
 1.4.2 Amplifier Circuit Symbol ~ 16
 1.4.3 Voltage Gain ~ 17
 1.4.4 Power Gain and Current Gain ~ 17
 1.4.5 Expressing Gain in Decibels ~ 18
 1.4.6 The Amplifier Power Supplies ~ 18
 1.4.7 Amplifier Saturation ~ 21
 1.4.8 Symbol Convention ~ 22
 1.5 Circuit Models for Amplifiers ~ 23
 1.5.1 Voltage Amplifiers ~ 23
 1.5.2 Cascaded Amplifiers ~ 25
 1.5.3 Other Amplifier Types ~ 28
 1.5.4 Relationships between the Four Amplifier Models ~ 28
 1.5.5 Determining \(R_i \) and \(R_o \) ~ 29
 1.5.6 Unilateral Models ~ 29
 1.6 Frequency Response of Amplifiers ~ 33
 1.6.1 Measuring the Amplifier Frequency Response ~ 33
 1.6.2 Amplifier Bandwidth ~ 34
 1.6.3 Evaluating the Frequency Response of Amplifiers ~ 34
 1.6.4 Single-Time-Constant Networks ~ 35
 1.6.5 Classification of Amplifiers Based on Frequency Response ~ 41
 Summary ~ 44
 Problems ~ 45

2 Operational Amplifiers ~ 58
 Introduction ~ 59
 2.1 The Ideal Op Amp ~ 60
 2.1.1 The Op-Amp Terminals ~ 60
 2.1.2 Function and Characteristics of the Ideal Op Amp ~ 61
 2.1.3 Differential and Common-Mode Signals ~ 63
 2.2 The Inverting Configuration ~ 64
 2.2.1 The Closed-Loop Gain ~ 65
 2.2.2 Effect of the Finite Open-Loop Gain ~ 67
 2.2.3 Input and Output Resistances ~ 68
 2.2.4 An Important Application—The Weighted Summer ~ 71
 2.3 The Noninverting Configuration ~ 73
 2.3.1 The Closed-Loop Gain ~ 73
 2.3.2 Effect of Finite Open-Loop Gain ~ 75
 2.3.3 Input and Output Resistance ~ 75
 2.3.4 The Voltage Follower ~ 75
 2.4 Difference Amplifiers ~ 77
 2.4.1 A Single-Op-Amp Difference Amplifier ~ 78
 2.4.2 A Superior Circuit—The Instrumentation Amplifier ~ 82
 2.5 Integrators and Differentiators ~ 87
 2.5.1 The Inverting Configuration with General Impedances ~ 87
 2.5.2 The Inverting Integrator ~ 89
 2.5.3 The Op-Amp Differentiator ~ 94
 2.6 DC Imperfections ~ 96
 2.6.1 Offset Voltage ~ 96
 2.6.2 Input Bias and Offset Currents ~ 100
 2.6.3 Effect of \(V_{os} \) and \(I_{os} \) on the Operation of the Inverting Integrator ~ 103
 2.7 Effect of Finite Open-Loop Gain and Bandwidth on Circuit Performance ~ 105
 2.7.1 Frequency Dependence of the Open-Loop Gain ~ 105
 2.7.2 Frequency Response of Closed-Loop Amplifiers ~ 107
Contents

5.1.3 Creating a Channel for Current Flow 250
5.1.4 Applying a Small v_{ds} 252
5.1.5 Operation as v_{ds} Is Increased 256
5.1.6 Operation for $v_{ds} \geq V_{ov}$: Channel Pinch-Off and Current Saturation 258
5.1.7 The p-Channel MOSFET 261
5.1.8 Complementary MOS or CMOS 263
5.1.9 Operating the MOS Transistor in the Subthreshold Region 264

5.2 Current–Voltage Characteristics 264
5.2.1 Circuit Symbol 264
5.2.2 The i_d–v_{ds} Characteristics 265
5.2.3 The i_d–v_{gs} Characteristic 267
5.2.4 Finite Output Resistance in Saturation 271
5.2.5 Characteristics of the p-Channel MOSFET 274

5.3 MOSFET Circuits at DC 276

5.4 The Body Effect and Other Topics 288
5.4.1 The Role of the Substrate—The Body Effect 288
5.4.2 Temperature Effects 289
5.4.3 Breakdown and Input Protection 289
5.4.4 Velocity Saturation 290
5.4.5 The Depletion-Type MOSFET 290

Summary 291
Problems 292

6 Bipolar Junction Transistors (BJTs) 304

6.1 Device Structure and Physical Operation 306
6.1.1 Simplified Structure and Modes of Operation 306
6.1.2 Operation of the npn Transistor in the Active Mode 307
6.1.3 Structure of Actual Transistors 315
6.1.4 Operation in the Saturation Mode 316
6.1.5 The pnp Transistor 318
6.2 Current–Voltage Characteristics 320
6.2.1 Circuit Symbols and Conventions 320
6.2.2 Graphical Representation of Transistor Characteristics 325

7 Transistor Amplifiers 366

7.1 Basic Principles 368
7.1.1 The Basis for Amplifier Operation 368
7.1.2 Obtaining a Voltage Amplifier 369
7.1.3 The Voltage-Transfer Characteristic (VTC) 370
7.1.4 Obtaining Linear Amplification by Biasing the Transistor 371
7.1.5 The Small-Signal Voltage Gain 374
7.1.6 Determining the VTC by Graphical Analysis 380
7.1.7 Deciding on a Location for the Bias Point Q 381
7.2 Small-Signal Operation and Models 383
7.2.1 The MOSFET Case 383
7.2.2 The BJT Case 399
7.2.3 Summary Tables 420

7.3 Basic Configurations 423
7.3.1 The Three Basic Configurations 423
7.3.2 Characterizing Amplifiers 424
7.3.3 The Common-Source (CS) and Common-Emitter (CE) Amplifiers 426
7.3.4 The Common-Source (Common-Emitter) Amplifier with a Source (Emitter) Resistance 431
7.3.5 The Common-Gate (CG) and the Common-Base (CB) Amplifiers 439
7.3.6 The Source and Emitter Followers 442
7.3.7 Summary Tables and Comparisons 452

6.2.3 Dependence of i_c on the Collector Voltage—The Early Effect 326
6.2.4 An Alternative Form of the Common-Emitter Characteristics 329
6.3 BJT Circuits at DC 333
6.4 Transistor Breakdown and Temperature Effects 351
6.4.1 Transistor Breakdown 351
6.4.2 Dependence of β on i_c and Temperature 353

Summary 354
Problems 355
7.3.8 When and How to Include the Transistor Output Resistance \(r_o \) 453

7.4 Biasing 454
7.4.1 The MOSFET Case 455
7.4.2 The BJT Case 461

7.5 Discrete-Circuit Amplifiers 467
7.5.1 A Common-Source (CS) Amplifier 467
7.5.2 A Common-Emitter (CE) Amplifier 470
7.5.3 A Common-Emitter Amplifier with an Emitter Resistance \(R_e \) 471
7.5.4 A Common-Base (CB) Amplifier 473
7.5.5 An Emitter Follower 475
7.5.6 The Amplifier Frequency Response 477

Summary 479
Problems 480

PART II INTEGRATED-CIRCUIT AMPLIFIERS 506

8 Building Blocks of Integrated-Circuit Amplifiers 508

Introduction 509
8.1 IC Design Philosophy 510
8.2 IC Biasing—Current Sources, Current Mirrors, and Current-Steering Circuits 511
8.2.1 The Basic MOSFET Current Source 512
8.2.2 MOS Current-Steering Circuits 515
8.2.3 BJT Circuits 518
8.2.4 Small-Signal Operation of Current Mirrors 523
8.3 The Basic Gain Cell 525
8.3.1 The CS and CE Amplifiers with Current-Source Loads 525
8.3.2 The Intrinsic Gain 527
8.3.3 Effect of the Output Resistance of the Current-Source Load 530
8.3.4 Increasing the Gain of the Basic Cell 536
8.4 The Common-Gate and Common-Base Amplifiers 537
8.4.1 The CG Circuit 537
8.4.2 Output Resistance of a CS Amplifier with a Source Resistance 541

8.4.3 The Body Effect 542
8.4.4 The CB Circuit 543
8.4.5 Output Resistance of an Emitter-Degenerated CE Amplifier 546
8.5 The Cascode Amplifier 546
8.5.1 Cascoding 546
8.5.2 The MOS Cascode Amplifier 547
8.5.3 Distribution of Voltage Gain in a Cascode Amplifier 552
8.5.4 Double Cascoding 555
8.5.5 The Folded Cascode 555
8.5.6 The BJT Cascode 557
8.6 Current-Mirror Circuits with Improved Performance 559
8.6.1 Cascode MOS Mirrors 559
8.6.2 The Wilson Current Mirror 560
8.6.3 The Wilson MOS Mirror 563
8.6.4 The Widlar Current Source 565
8.7 Some Useful Transistor Pairings 567
8.7.1 The CC–CE, CD–CS, and CD–CE Configurations 567
8.7.2 The Darlington Configuration 571
8.7.3 The CC–CB and CD–CG Configurations 572

Summary 575
Problems 576

9 Differential and Multistage Amplifiers 594

Introduction 595
9.1 The MOS Differential Pair 596
9.1.1 Operation with a Common-Mode Input Voltage 597
9.1.2 Operation with a Differential Input Voltage 601
9.1.3 Large-Signal Operation 602
9.1.4 Small-Signal Operation 607
9.1.5 The Differential Amplifier with Current-Source Loads 611
9.1.6 Cascode Differential Amplifier 612
9.2 The BJT Differential Pair 614
9.2.1 Basic Operation 614
9.2.2 Input Common-Mode Range 616
9.2.3 Large-Signal Operation 617
9.2.4 Small-Signal Operation 620
9.3 Common-Mode Rejection 627
9.3.1 The MOS Case 628
9.3.2 The BJT Case 634
9.4 DC Offset 637
11.1.3 The Loop Gain 810
11.1.4 Summary 814
11.2 Some Properties of Negative Feedback 815
11.2.1 Gain Desensitivity 815
11.2.2 Bandwidth Extension 816
11.2.3 Interference Reduction 817
11.2.4 Reduction in Nonlinear Distortion 819
11.3 The Feedback Voltage Amplifier 820
11.3.1 The Series–Shunt Feedback Topology 820
11.3.2 Examples of Series–Shunt Feedback Amplifiers 821
11.3.3 Analysis of the Feedback Voltage Amplifier Utilizing the Loop Gain 823
11.3.4 A Final Remark 828
11.4 Systematic Analysis of Feedback Voltage Amplifiers 828
11.4.1 The Ideal Case 829
11.4.2 The Practical Case 831
11.5 Other Feedback Amplifier Types 840
11.5.1 Basic Principles 840
11.5.2 The Feedback Transconductance Amplifier (Series–Series) 844
11.5.3 The Feedback Transresistance Amplifier (Shunt–Shunt) 855
11.5.4 The Feedback Current Amplifier (Shunt–Series) 865
11.6 Summary of the Feedback Analysis Method 871
11.7 The Stability Problem 871
11.7.1 Transfer Function of the Feedback Amplifier 871
11.7.2 The Nyquist Plot 873
11.8 Effect of Feedback on the Amplifier Poles 875
11.8.1 Stability and Pole Location 875
11.8.2 Poles of the Feedback Amplifier 876
11.8.3 Amplifier with a Single-Pole Response 877
11.8.4 Amplifier with a Two-Pole Response 878
11.8.5 Amplifiers with Three or More Poles 883
11.9 Stability Study Using Bode Plots 885
11.9.1 Gain and Phase Margins 885
11.9.2 Effect of Phase Margin on Closed-Loop Response 886
11.9.3 An Alternative Approach for Investigating Stability 887
11.10 Frequency Compensation 889
11.10.1 Theory 889
11.10.2 Implementation 891
11.10.3 Miller Compensation and Pole Splitting 892
Summary 895
Problems 896

12 Output Stages and Power Amplifiers 920

Introduction 921
12.1 Classification of Output Stages 922
12.2 Class A Output Stage 923
12.2.1 Transfer Characteristic 924
12.2.2 Signal Waveforms 925
12.2.3 Power Dissipation 926
12.2.4 Power-Conversion Efficiency 928
12.3 Class B Output Stage 929
12.3.1 Circuit Operation 929
12.3.2 Transfer Characteristic 929
12.3.3 Power-Conversion Efficiency 930
12.3.4 Power Dissipation 931
12.3.5 Reducing Crossover Distortion 933
12.3.6 Single-Supply Operation 934
12.4 Class AB Output Stage 935
12.4.1 Circuit Operation 935
12.4.2 Output Resistance 937
12.5 Biasing the Class AB Circuit 940
12.5.1 Biasing Using Diodes 940
12.5.2 Biasing Using the V_{BE} Multiplier 942
12.6 Variations on the Class AB Configuration 945
12.6.1 Use of Input Emitter Followers 945
12.6.2 Use of Compound Devices 946
12.6.3 Short-Circuit Protection 949
12.6.4 Thermal Shutdown 950
12.7 CMOS Class AB Output Stages 950
12.7.1 The Classical Configuration 950
12.7.2 An Alternative Circuit Utilizing Common-Source Transistors 953
12.8 IC Power Amplifiers 961
12.8.1 A Fixed-Gain IC Power Amplifier 962
Contents

12.8.2 The Bridge Amplifier 966
12.9 Class D Power Amplifiers 967
12.10 Power Transistors 971
12.10.1 Packages and Heat Sinks 971
12.10.2 Power BJTs 972
12.10.3 Power MOSFETs 974
12.10.4 Thermal Considerations 976

Summary 982
Problems 983

13 Operational-Amplifier Circuits 994

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>995</td>
</tr>
<tr>
<td>13.1 The Two-Stage CMOS Op Amp</td>
<td>996</td>
</tr>
<tr>
<td>13.1.1 The Circuit</td>
<td>997</td>
</tr>
<tr>
<td>13.1.2 Input Common-Mode Range and Output Swing</td>
<td>998</td>
</tr>
<tr>
<td>13.1.3 DC Voltage Gain</td>
<td>999</td>
</tr>
<tr>
<td>13.1.4 Common-Mode Rejection Ratio (CMRR)</td>
<td>1001</td>
</tr>
<tr>
<td>13.1.5 Frequency Response</td>
<td>1002</td>
</tr>
<tr>
<td>13.1.6 Slew Rate</td>
<td>1007</td>
</tr>
<tr>
<td>13.1.7 Power-Supply Rejection Ratio (PSRR)</td>
<td>1008</td>
</tr>
<tr>
<td>13.1.8 Design Trade-Offs</td>
<td>1009</td>
</tr>
<tr>
<td>13.1.9 A Bias Circuit for the Two-Stage CMOS Op Amp</td>
<td>1010</td>
</tr>
<tr>
<td>13.2 The Folded-Cascode CMOS Op Amp</td>
<td>1016</td>
</tr>
<tr>
<td>13.2.1 The Circuit</td>
<td>1016</td>
</tr>
<tr>
<td>13.2.2 Input Common-Mode Range and Output Swing</td>
<td>1018</td>
</tr>
<tr>
<td>13.2.3 Voltage Gain</td>
<td>1020</td>
</tr>
<tr>
<td>13.2.4 Frequency Response</td>
<td>1021</td>
</tr>
<tr>
<td>13.2.5 Slew Rate</td>
<td>1022</td>
</tr>
<tr>
<td>13.2.6 Increasing the Input Common-Mode Range: Rail-to-Rail Operation</td>
<td>1024</td>
</tr>
<tr>
<td>13.2.7 Increasing the Output Voltage Range: The Wide-Swing Current Mirror</td>
<td>1026</td>
</tr>
<tr>
<td>13.3 The 741 BJT Op Amp</td>
<td>1028</td>
</tr>
<tr>
<td>13.3.1 The 741 Circuit</td>
<td>1028</td>
</tr>
<tr>
<td>13.3.2 DC Analysis</td>
<td>1032</td>
</tr>
<tr>
<td>13.3.3 Small-Signal Analysis</td>
<td>1038</td>
</tr>
<tr>
<td>13.3.4 Frequency Response</td>
<td>1051</td>
</tr>
<tr>
<td>13.3.5 Slew Rate</td>
<td>1053</td>
</tr>
<tr>
<td>13.4 Modern Techniques for the Design of BJT Op Amps</td>
<td>1054</td>
</tr>
<tr>
<td>13.4.1 Special Performance Requirements</td>
<td>1054</td>
</tr>
<tr>
<td>13.4.2 Bias Design</td>
<td>1056</td>
</tr>
<tr>
<td>13.4.3 Design of the Input Stage to Obtain Rail-to-Rail (V_{\text{CM}})</td>
<td>1058</td>
</tr>
<tr>
<td>13.4.4 Common-Mode Feedback to Control the DC Voltage at the Output of the Input Stage</td>
<td>1064</td>
</tr>
<tr>
<td>13.4.5 Output-Stage Design for Near Rail-to-Rail Output Swing</td>
<td>1069</td>
</tr>
<tr>
<td>13.4.6 Concluding Remark</td>
<td>1073</td>
</tr>
</tbody>
</table>

Summary 1073
Problems 1074

PART III DIGITAL INTEGRATED CIRCUITS 1086

14 CMOS Digital Logic Circuits 1088

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1089</td>
</tr>
<tr>
<td>14.1 CMOS Logic-Gate Circuits</td>
<td>1090</td>
</tr>
<tr>
<td>14.1.1 Switch-Level Transistor Model</td>
<td>1090</td>
</tr>
<tr>
<td>14.1.2 The CMOS Inverter</td>
<td>1091</td>
</tr>
<tr>
<td>14.1.3 General Structure of CMOS Logic</td>
<td>1091</td>
</tr>
<tr>
<td>14.1.4 The Two-Input NOR Gate</td>
<td>1094</td>
</tr>
<tr>
<td>14.1.5 The Two-Input NAND Gate</td>
<td>1095</td>
</tr>
<tr>
<td>14.1.6 A Complex Gate</td>
<td>1096</td>
</tr>
<tr>
<td>14.1.7 Obtaining the PUN from the PDN and Vice Versa</td>
<td>1096</td>
</tr>
<tr>
<td>14.1.8 The Exclusive-OR Function</td>
<td>1097</td>
</tr>
<tr>
<td>14.1.9 Summary of the Synthesis Method</td>
<td>1098</td>
</tr>
<tr>
<td>14.2 Digital Logic Inverters</td>
<td>1100</td>
</tr>
<tr>
<td>14.2.1 The Voltage-Transfer Characteristic (VTC)</td>
<td>1100</td>
</tr>
<tr>
<td>14.2.2 Noise Margins</td>
<td>1101</td>
</tr>
<tr>
<td>14.2.3 The Ideal VTC</td>
<td>1103</td>
</tr>
<tr>
<td>14.2.4 Inverter Implementation</td>
<td>1103</td>
</tr>
<tr>
<td>14.3 The CMOS Inverter</td>
<td>1114</td>
</tr>
<tr>
<td>14.3.1 Circuit Operation</td>
<td>1114</td>
</tr>
<tr>
<td>14.3.2 The Voltage-Transfer Characteristic (VTC)</td>
<td>1117</td>
</tr>
<tr>
<td>14.3.3 The Situation When (Q_N) and (Q_P) Are Not Matched</td>
<td>1120</td>
</tr>
<tr>
<td>14.4 Dynamic Operation of the CMOS Inverter</td>
<td>1125</td>
</tr>
</tbody>
</table>
14.4.1 Propagation Delay 1125
14.4.2 Determining the Propagation Delay of the CMOS Inverter 1129
14.4.3 Determining the Equivalent Load Capacitance \(C \) 1136
14.5 Transistor Sizing 1139
14.5.1 Inverter Sizing 1139
14.5.2 Transistor Sizing in CMOS Logic Gates 1141
14.5.3 Effects of Fan-In and Fan-Out on Propagation Delay 1145
14.5.4 Driving a Large Capacitance 1146
14.6 Power Dissipation 1149
14.6.1 Sources of Power Dissipation 1149
14.6.2 Power–Delay and Energy–Delay Products 1152
Summary 1154
Problems 1156

15 Advanced Topics in Digital Integrated-Circuit Design 1166

15.1 Implications of Technology Scaling: Issues in Deep-Submicron Design 1168
15.1.1 Silicon Area 1169
15.1.2 Scaling Implications 1169
15.1.3 Velocity Saturation 1171
15.1.4 Subthreshold Conduction 1177
15.1.5 Temperature, Voltage, and Process Variations 1178
15.1.6 Wiring: The Interconnect 1178
15.2 Digital IC Technologies, Logic-Circuit Families, and Design Methodologies 1179
15.2.1 Digital IC Technologies and Logic-Circuit Families 1180
15.2.2 Styles for Digital System Design 1182
15.2.3 Design Abstraction and Computer Aids 1182
15.3 Pseudo-NMOS Logic Circuits 1183
15.3.1 The Pseudo-NMOS Inverter 1183
15.3.2 Static Characteristics 1184
15.3.3 Derivation of the VTC 1186
15.3.4 Dynamic Operation 1188
15.3.5 Design 1189
15.3.6 Gate Circuits 1189

15.4 Pass-Transistor Logic Circuits 1192
15.4.1 An Essential Design Requirement 1193
15.4.2 Operation with NMOS Transistors as Switches 1194
15.4.3 Restoring the Value of \(V_{OH} \) to \(V_{DD} \) 1198
15.4.4 The Use of CMOS Transmission Gates as Switches 1199
15.4.5 Examples of Pass-Transistor Logic Circuits 1206
15.4.6 A Final Remark 1208
15.5 Dynamic MOS Logic Circuits 1208
15.5.1 The Basic Principle 1209
15.5.2 Nonideal Effects 1212
15.5.3 Domino CMOS Logic 1216
15.5.4 Concluding Remarks 1217
15.6 Bipolar and BiCMOS Logic Circuits 1217
15.6.1 Emitter-Coupled Logic (ECL) 1218
15.6.2 BiCMOS Digital Circuits 1223
Summary 1226
Problems 1227

16 Memory Circuits 1236

16.1 Latches and Flip-Flops 1238
16.1.1 The Latch 1238
16.1.2 The SR Flip-Flop 1240
16.1.3 CMOS Implementation of SR Flip-Flops 1241
16.1.4 A Simpler CMOS Implementation of the Clocked SR Flip-Flop 1247
16.1.5 D Flip-Flop Circuits 1247
16.2 Semiconductor Memories: Types and Architectures 1249
16.2.1 Memory-Chip Organization 1250
16.2.2 Memory-Chip Timing 1252
16.3 Random-Access Memory (RAM) Cells 1253
16.3.1 Static Memory (SRAM) Cell 1253
16.3.2 Dynamic Memory (DRAM) Cell 1260
16.4 Sense Amplifiers and Address Decoders 1262
16.4.1 The Sense Amplifier 1263
Contents

16.4.2 The Row-Address Decoder 1271
16.4.3 The Column-Address Decoder 1273
16.4.4 Pulse-Generation Circuits 1274
16.5 Read-Only Memory (ROM) 1276
16.5.1 A MOS ROM 1276
16.5.2 Mask Programmable ROMs 1278
16.5.3 Programmable ROMs (PROMs, EPROMs, and Flash) 1279
16.6 CMOS Image Sensors 1281

Summary 1282

Problems 1283

PART IV FILTERS AND OSCILLATORS 1288

17 Filters and Tuned Amplifiers 1290

Introduction 1291
17.1 Filter Transmission, Types, and Specification 1292
17.1.1 Filter Transmission 1292
17.1.2 Filter Types 1293
17.1.3 Filter Specification 1293
17.2 The Filter Transfer Function 1296
17.3 Butterworth and Chebyshev Filters 1300
17.3.1 The Butterworth Filter 1300
17.3.2 The Chebyshev Filter 1304
17.4 First-Order and Second-Order Filter Functions 1307
17.4.1 First-Order Filters 1308
17.4.2 Second-Order Filter Functions 1311
17.5 The Second-Order LCR Resonator 1316
17.5.1 The Resonator Natural Modes 1316
17.5.2 Realization of Transmission Zeros 1317
17.5.3 Realization of the Low-Pass Function 1317
17.5.4 Realization of the High-Pass Function 1319
17.5.5 Realization of the Bandpass Function 1319
17.5.6 Realization of the Notch Functions 1319
17.5.7 Realization of the All-Pass Function 1321
17.6 Second-Order Active Filters Based on Inductor Replacement 1322
17.6.1 The Antoniou Inductance-Simulation Circuit 1322
17.6.2 The Op Amp–RC Resonator 1323
17.6.3 Realization of the Various Filter Types 1325
17.6.4 The All-Pass Circuit 1325
17.7 Second-Order Active Filters Based on the Two-Integrator-Loop Topology 1330
17.7.1 Derivation of the Two-Integrator-Loop Biquad 1330
17.7.2 Circuit Implementation 1332
17.7.3 An Alternative Two-Integrator-Loop Biquad Circuit 1334
17.7.4 Final Remarks 1335
17.8 Single-Amplifier Biquadratic Active Filters 1336
17.8.1 Synthesis of the Feedback Loop 1336
17.8.2 Injecting the Input Signal 1339
17.8.3 Generation of Equivalent Feedback Loops 1341
17.9 Sensitivity 1344
17.10 Transconductance-C Filters 1347
17.10.1 Methods for IC Filter Implementation 1347
17.10.2 Transconductors 1348
17.10.3 Basic Building Blocks 1349
17.10.4 Second-Order G_m-C Filter 1351
17.11 Switched-Capacitor Filters 1354
17.11.1 The Basic Principle 1354
17.11.2 Practical Circuits 1356
17.11.3 Final Remarks 1359
17.12 Tuned Amplifiers 1359
17.12.1 The Basic Principle 1360
17.12.2 Inductor Losses 1362
17.12.3 Use of Transformers 1363
17.12.4 Amplifiers with Multiple Tuned Circuits 1365
17.12.5 The Cascade and the CC–CB Cascade 1366
17.12.6 Synchronous Tuning and Stagger Tuning 1367

Summary 1368

Problems 1369

18 Signal Generators and Waveform-Shaping Circuits 1378

Introduction 1379
18.1 Basic Principles of Sinusoidal Oscillators 1380
Contents

18.1 The Oscillator Feedback Loop 1380
18.1.1 The Oscillator Feedback Loop 1380
18.1.2 The Oscillation Criterion 1381
18.1.3 Analysis of Oscillator Circuits 1382
18.1.4 Nonlinear Amplitude Control 1385
18.1.5 A Popular Limiter Circuit for Amplitude Control 1386
18.2 Op Amp–RC Oscillator Circuits 1388
18.2.1 The Wien-Bridge Oscillator 1388
18.2.2 The Phase-Shift Oscillator 1391
18.2.3 The Quadrature Oscillator 1392
18.2.4 The Active-Filter-Tuned Oscillator 1394
18.2.5 A Final Remark 1396
18.3 LC and Crystal Oscillators 1396
18.3.1 The Colpitts and Hartley Oscillators 1396
18.3.2 The Cross-Coupled LC Oscillator 1400
18.3.3 Crystal Oscillators 1402
18.4 Bistable Multivibrators 1404
18.4.1 The Feedback Loop 1405
18.4.2 Transfer Characteristic of the Bistable Circuit 1406
18.4.3 Triggering the Bistable Circuit 1407
18.4.4 The Bistable Circuit as a Memory Element 1407
18.4.5 A Bistable Circuit with Noninverting Transfer Characteristic 1408
18.4.6 Application of the Bistable Circuit as a Comparator 1409
18.4.7 Making the Output Levels More Precise 1411
18.5 Generation of Square and Triangular Waveforms Using Astable Multivibrators 1412
18.5.1 Operation of the Astable Multivibrator 1413
18.5.2 Generation of Triangular Waveforms 1415
18.6 Generation of a Standardized Pulse: The Monostable Multivibrator 1417
18.7 Integrated-Circuit Timers 1419
18.7.1 The 555 Circuit 1419
18.7.2 Implementing a Monostable Multivibrator Using the 555 IC 1420
18.7.3 An Astable Multivibrator Using the 555 IC 1420
18.8 Nonlinear Waveform-Shaping Circuits 1424
18.8.1 The Breakpoint Method 1424
18.8.2 The Nonlinear-Amplification Method 1426
Summary 1428
Problems 1428

Appendices
A. VLSI Fabrication Technology (on website) A-1
B. SPICE Device Models and Design and Simulation Examples Using PSpice® and Multisim™ (on website) B-1
C. Two-Port Network Parameters (on website) C-1
D. Some Useful Network Theorems (on website) D-1
E. Single-Time-Constant Circuits (on website) E-1
F. s-Domain Analysis: Poles, Zeros, and Bode Plots (on website) F-1
G. Comparison of the MOSFET and the BJT (on website, also Table G.3 in text) G-1
H. Design of Stagger-Tuned Amplifiers (on website) H-1
I. Bibliography (on website) I-1
J. Standard Resistance Values and Unit Prefixes J-1
K. Typical Parameter Values for IC Devices Fabricated in CMOS and Bipolar Processes K-1
L. Answers to Selected Problems (on website) L-1

Index IN-1