Homework 3 Book Exercises:

2.113 Find the f_{t} required for internally compensated op amps to be used in the implementation of closed-loop amplifiers with the following nominal dc gains and $3-\mathrm{dB}$ bandwidths:
(a) $-50 \mathrm{~V} / \mathrm{V} ; 100 \mathrm{kHz}$
(b) $+50 \mathrm{~V} / \mathrm{V} ; 100 \mathrm{kHz}$
(c) $+2 \mathrm{~V} / \mathrm{V} ; 5 \mathrm{MHz}$
(d) $-2 \mathrm{~V} / \mathrm{V} ; 5 \mathrm{MHz}$
(e) $-1000 \mathrm{~V} / \mathrm{V} ; 10 \mathrm{kHz}$
(f) $+1 \mathrm{~V} / \mathrm{V} ; 1 \mathrm{MHz}$
(g) $-1 \mathrm{~V} / \mathrm{V} ; 1 \mathrm{MHz}$
2.123 An op amp having a slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ is to be used in the unity-gain follower configuration, with input pulses that rise from 0 to 2 V . What is the shortest pulse that can be used while ensuring full-amplitude output? For such a pulse, describe the output resulting.
2.126 For an amplifier having a slew rate of $40 \mathrm{~V} / \mu \mathrm{s}$, what is the highest frequency at which a $20-\mathrm{V}$ peak-to-peak sine wave can be produced at the output?

