- **2.122** Consider an op amp connected in the inverting configuration to realize a closed-loop gain of -100 V/V utilizing resistors of $1 \text{ k}\Omega$ and $100 \text{ k}\Omega$. A load resistance R_L is connected from the output to ground, and a low-frequency sine-wave signal of peak amplitude V_p is applied to the input. Let the op amp be ideal except that its output voltage saturates at $\pm 10 \text{ V}$ and its output current is limited to the range $\pm 20 \text{ mA}$.
- (a) For $R_L = 1 \text{ k}\Omega$, what is the maximum possible value of V_p while an undistorted output sinusoid is obtained?
- (b) Repeat (a) for $R_L = 200 \Omega$.
- (c) If it is desired to obtain an output sinusoid of 10-V peak amplitude, what minimum value of R_L is allowed?
- **2.125** What is the highest frequency of a triangle wave of 10-V peak-to-peak amplitude that can be reproduced by an op amp whose slew rate is 20 V/μs? For a sine wave of the same frequency, what is the maximum amplitude of output signal that remains undistorted?
- *2.105 An op amp intended for operation with a closed-loop gain of -100 V/V uses resistors of $10 \text{ k}\Omega$ and $1 \text{ M}\Omega$ with a bias-current-compensation resistor R_3 . What should the value of R_3 be? With input grounded, the output offset voltage is found to be +0.30 V. Estimate the input offset current assuming zero input offset voltage. If the input offset voltage can be as large as 1 mV of unknown polarity, what range of offset current is possible?