
\*5.42 Various NMOS and PMOS transistors, numbered 1 to 4, are measured in operation, as shown in the table at the bottom of the page. For each transistor, find the values of  $\mu C_{ox}W/L$  and  $V_t$  that apply and complete the table, with V in volts, I in  $\mu A$ , and  $\mu C_{ox}W/L$  in  $\mu A/V^2$ . Assume  $\lambda = 0$ .

| Case | Transistor | <b>V</b> s | <b>V</b> <sub>G</sub> | $V_D$ | $I_D$ | Туре | Mode | $\mu$ C <sub>ox</sub> W/L | $V_t$ |
|------|------------|------------|-----------------------|-------|-------|------|------|---------------------------|-------|
| a    | 1          | 0          | 1                     | 2.5   | 100   |      |      |                           |       |
|      | 1          | 0          | 1.5                   | 2.5   | 400   |      |      |                           |       |
| b    | 2          | 5          | 3                     | -4.5  | 50    |      |      |                           |       |
|      | 2          | 5          | 2                     | -0.5  | 450   |      |      |                           |       |
| С    | 3          | 5          | 3                     | 4     | 200   |      |      |                           |       |
|      | 3          | 5          | 2                     | 0     | 800   |      |      |                           |       |
| d    | 4          | -2         | 0                     | 0     | 72    |      |      |                           |       |
|      | 4          | -4         | 0                     | -3    | 270   |      |      |                           |       |
|      |            |            |                       |       |       |      |      |                           |       |

**D 7.106** Consider the single-supply bias network shown in Fig. 7.52(a). Provide a design using a 9-V supply in which the supply voltage is equally split between  $R_C$ ,  $V_{CE}$ , and  $R_E$  with a collector current of 0.6 mA. The transistor  $\beta$  is specified to have a minimum value of 90. Use a voltage-divider current of  $I_E/10$ , or slightly higher. Since a reasonable design should operate for the best transistors for which  $\beta$  is very high, do your initial design with  $\beta = \infty$ . Then choose suitable 5% resistors (see Appendix J), making the choice in a way that will result in a  $V_{BB}$  that is slightly higher than the ideal value. Specify the values you have chosen for  $R_E$ ,  $R_C$ ,  $R_1$ , and  $R_2$ . Now, find  $V_B$ ,  $V_E$ ,  $V_C$ , and  $I_C$  for your final design using  $\beta = 90$ .





 $V_{CC}$ 

**D** \*7.26 An NMOS amplifier is to be designed to provide a 0.20-V peak output signal across a 20-kΩ load that can be used as a drain resistor. If a gain of at least 10 V/V is needed, what  $g_m$  is required? Using a dc supply of 1.8 V, what values of  $I_D$  and  $V_{OV}$  would you choose? What W/L ratio is required if  $\mu_n C_{ox} = 200 \,\mu\text{A/V}^2$ ? If  $V_t = 0.4 \,\text{V}$ , find  $V_{GS}$ .

\*7.33 Figure P7.33 shows a discrete-circuit amplifier. The input signal  $v_{\rm sig}$  is coupled to the gate through a very large capacitor (shown as infinite). The transistor source is connected to ground at signal frequencies via a very large capacitor (shown as infinite). The output voltage signal that develops at the drain is coupled to a load resistance via a very large capacitor (shown as infinite). All capacitors behave as short circuits for signals and as open circuits for dc.

- (a) If the transistor has  $V_t = 1 \text{ V}$ , and  $k_n = 4 \text{ mA/V}^2$ , verify that the bias circuit establishes  $V_{GS} = 1.5 \text{ V}$ ,  $I_D = 0.5 \text{ mA}$ , and  $V_D = +7.0 \text{ V}$ . That is, assume these values, and verify that they are consistent with the values of the circuit components and the device parameters.
- (b) Find  $g_m$  and  $r_o$  if  $V_A = 100 \text{ V}$ .
- (c) Draw a complete small-signal equivalent circuit for the amplifier, assuming all capacitors behave as short circuits at signal frequencies.
- (d) Find  $R_{in}$ ,  $v_{gs}/v_{sig}$ ,  $v_o/v_{gs}$ , and  $v_o/v_{sig}$ .

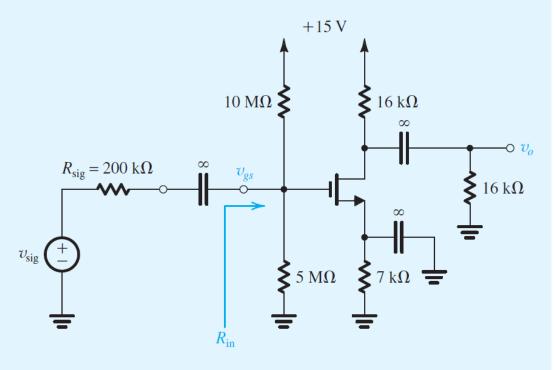



Figure P7.33