*5.42 Various NMOS and PMOS transistors, numbered 1 to 4, are measured in operation, as shown in the table at the bottom of the page. For each transistor, find the values of $\mu C_{ox}W/L$ and V_t that apply and complete the table, with V in volts, I in μA , and $\mu C_{ox}W/L$ in $\mu A/V^2$. Assume $\lambda = 0$. | Case | Transistor | V s | V _G | V_D | I_D | Туре | Mode | μ C _{ox} W/L | V_t | |------|------------|------------|-----------------------|-------|-------|------|------|---------------------------|-------| | a | 1 | 0 | 1 | 2.5 | 100 | | | | | | | 1 | 0 | 1.5 | 2.5 | 400 | | | | | | b | 2 | 5 | 3 | -4.5 | 50 | | | | | | | 2 | 5 | 2 | -0.5 | 450 | | | | | | С | 3 | 5 | 3 | 4 | 200 | | | | | | | 3 | 5 | 2 | 0 | 800 | | | | | | d | 4 | -2 | 0 | 0 | 72 | | | | | | | 4 | -4 | 0 | -3 | 270 | | | | | | | | | | | | | | | | **D 7.106** Consider the single-supply bias network shown in Fig. 7.52(a). Provide a design using a 9-V supply in which the supply voltage is equally split between R_C , V_{CE} , and R_E with a collector current of 0.6 mA. The transistor β is specified to have a minimum value of 90. Use a voltage-divider current of $I_E/10$, or slightly higher. Since a reasonable design should operate for the best transistors for which β is very high, do your initial design with $\beta = \infty$. Then choose suitable 5% resistors (see Appendix J), making the choice in a way that will result in a V_{BB} that is slightly higher than the ideal value. Specify the values you have chosen for R_E , R_C , R_1 , and R_2 . Now, find V_B , V_E , V_C , and I_C for your final design using $\beta = 90$. V_{CC} **D** *7.26 An NMOS amplifier is to be designed to provide a 0.20-V peak output signal across a 20-kΩ load that can be used as a drain resistor. If a gain of at least 10 V/V is needed, what g_m is required? Using a dc supply of 1.8 V, what values of I_D and V_{OV} would you choose? What W/L ratio is required if $\mu_n C_{ox} = 200 \,\mu\text{A/V}^2$? If $V_t = 0.4 \,\text{V}$, find V_{GS} . *7.33 Figure P7.33 shows a discrete-circuit amplifier. The input signal $v_{\rm sig}$ is coupled to the gate through a very large capacitor (shown as infinite). The transistor source is connected to ground at signal frequencies via a very large capacitor (shown as infinite). The output voltage signal that develops at the drain is coupled to a load resistance via a very large capacitor (shown as infinite). All capacitors behave as short circuits for signals and as open circuits for dc. - (a) If the transistor has $V_t = 1 \text{ V}$, and $k_n = 4 \text{ mA/V}^2$, verify that the bias circuit establishes $V_{GS} = 1.5 \text{ V}$, $I_D = 0.5 \text{ mA}$, and $V_D = +7.0 \text{ V}$. That is, assume these values, and verify that they are consistent with the values of the circuit components and the device parameters. - (b) Find g_m and r_o if $V_A = 100 \text{ V}$. - (c) Draw a complete small-signal equivalent circuit for the amplifier, assuming all capacitors behave as short circuits at signal frequencies. - (d) Find R_{in} , v_{gs}/v_{sig} , v_o/v_{gs} , and v_o/v_{sig} . Figure P7.33