Lecture 2, February 19, 2001

EECS 105 M icroelectronics Devices and Circuits, Spring 2001

Andrew R. Neureuther
Topics:
Value Added by Circuits

Reading: (review of EE
40), HS 1, 8.2.2, 9.1

Revised 1/ 21/ 01

How Does a Digital Camera Work?

- Physics (semiconductor junction)
" Photons => charge => voltage
- Analog Circuits
" Amplify, gray level conversion
- Digital Circuits
" Encode, store, move, play
- Analog Circuits
" Display drivers

M odel for Photo Detector

- Film sensitivity $\sim 3 \times 10^{4}$ photons

$$
\Delta Q_{S}=3 \times 10^{4} \text { electrons }
$$

- Junction capacitance $C_{J} \sim 30 \mathrm{fF}$
- $\Delta \mathrm{V}_{\mathrm{S}}=\Delta \mathrm{Q} / \mathrm{C}_{\mathrm{J}}=3 \times 10^{4} \times 1.6 \times 10^{-19} / 3 \times 10^{-14}$
R_{S}

$$
\Delta \mathrm{V}_{\mathrm{S}}=160 \mathrm{mV}
$$

- Series resistance $R_{S}=200$ Ohms

$$
\begin{aligned}
& \mathrm{V}_{\text {SOURCE }}=\mathrm{V}_{\text {BIAS }}+\Delta \mathrm{V}_{\mathrm{S}} \\
& =\mathrm{V}_{\text {BIAS }}+\Delta \mathrm{Q} / \mathrm{C}_{\mathrm{J}}
\end{aligned}
$$

Current to Voltage Conversion

- Op-Amp Circuit

Remove
Bias
$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{R}}-\mathrm{R}_{\mathrm{F}}\left\{\left(\mathrm{V}_{\text {BIAS }}+\Delta \mathrm{V}_{S^{-}} \mathrm{V}_{\mathrm{R}}\right) / \mathrm{R}_{\mathrm{S}}\right\}$
Current ${ }^{-7}$

Op-Amps are Ideal but EE 105 is N ot

- Ideal Op-Amp properties
" No input current (Infinite $\mathrm{R}_{\text {IN! }}$) get these?
" $\mathbf{V}_{\mathbf{-}}=\mathbf{V}_{+}$(Infinite voltage gain! With feedback) - Topic for EE 140
- Circuit configurations give the leverage to build nearly ideal circuits from devices with less than ideal properties.
Don't forget about Op-Amps from EE 40 as in EE 105 we will use Op-Amps to study circuit concepts like frequency-response.

Back to the Future

- 3 MegaPixels with 3 colors requires nearly 10M OpAmps.
- If each draws $100 \mu \mathrm{~A}$, the battery must supply 1000A.

A car battery would last only 3 minutes!

- Solution: Analog switch array of 10 levels and 2^{10} 1024 factor of sharing. Resistance and Capacitance of

1024
 Photodiodes

 10 analog switches in series

Amplifier

$\mathrm{R}_{\mathrm{SA}}=10^{*} 10 \mathrm{k} \Omega=100 \mathrm{k} \Omega$
$C_{S A}=10 * 30 f F=300 \mathrm{fF}$

Model For Switching and Amplifier

ΔV^{\prime} is 10 times smaller due to $\mathrm{C}_{\text {SA }}$ and is now about 15 mV

From 200 Ohms to 100,200 Ohms => 500X smaller signal!

Simple EE 105 Amplifier

$\mathrm{V}_{\text {OUT }}=\left[\Delta \mathrm{V}^{\prime} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{SA}}+\mathrm{R}_{\text {IN }}\right)\right](-\beta) \mathrm{R}_{\text {LOAD }}=115 \mathrm{mV}$

Circuit to Hold the Charge Longer

- Problem CJ Discharges Quickly

$$
\mathrm{T}=\mathrm{C}_{J}{ }^{*} \mathrm{R}_{\mathrm{SA}}=30 \mathrm{fF} * 100 \mathrm{k} \Omega=3^{*} 10^{-10} \mathrm{Sec}
$$

- Solution: Add Value Through Circuit Design of High Input Resistance Amplifier

High Input Impedance Circuit

$$
\begin{aligned}
& \mathrm{V}_{\text {OUT }}=\left[\underline{\Delta \mathrm{V}^{\prime} /} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\text {SA }}+\mathrm{R}_{\text {IN EQ }}\right)\right](-\beta) \mathrm{R}_{\text {LOAD }}=5 \mathrm{mV} \\
& \Sigma V_{i}=0 \Rightarrow i_{I N}
\end{aligned}
$$

Adding a Second Stage

Visualizing as a M ultistage Amplifier

Error fixed 1/ 21/00

Visualizing as an Equivalent Two-Port

Multistage Amplifiers

This example from the reading in Chapter 8 this week.

Classification of Two-Port Amplifiers

What Goes in the Amplifier Box

M aterial from Chapter 8 from week 11.

Small Signal M odels for Transistors

Week 5

BJT
Week 8

Layout of Transistors

