Week 2, Lectures 3-5, February 22-26, 2001

EECS 105 Microelectronics Devices and Circuits, Spring 2001
Andrew R. Neureuther
Topics: Practice Loop and Node Eqns., Two-Ports, Silicon Physics - Carriers, Process Flow and Layout, Sheet Resistance, Squares

Reading for week: (review of EE 40), HS 8.2.2, 9.1, 2.1-2.4, 2.5.4-2.6, 4.1.1, 4.5.7,6.2, 7.1.1,7.7,

Outline: Week 2 Lectures 3-5

L3: More Basic Circuits (HS 8.2.2, 9.1)
Loop and Node Equations, Two-Ports
L4: Silicon Physics (HS 2.1-2.4, 2.5.4,
4.1.1, 5.4.7, 6.2, 7.1.1,7.1)

Carriers, Process Flow and Layout
L5: IC Resistors (HS 2.6)
Sheet resistance and Number of Squares

Lecture 3, February 22, 2001

EECS 105 Microelectronics Devices and Circuits, Spring 2001
 Andrew R. Neureuther
 Topics:
 Practice Circuit Analysis, Two-Ports

Reading: (review of EE
 40), HS 8.2.2, 9.1

W2 M L3: More Basic Circuits

- Practice circuit analysis
" $R_{I N}$ with R_{E}
" Gain or Rout with R_{E}
- Standard Two-ports
- Difficulty of two-ports with output coupled back to input

High Input Impedance Circuit

$$
\begin{aligned}
& \mathbf{V}_{\text {OUT }}=\left[\Delta \mathbf{V}_{S}^{\prime} /\left(\mathbf{R}_{S}+\mathbf{R}_{\text {SA }}+\mathbf{R}_{\text {IN EQ }}\right)\right](-\beta) \mathbf{R}_{\text {LOAD }}=5 \mathrm{mV} \\
& \Sigma \mathrm{~V}_{\mathrm{i}}=0 \Rightarrow \mathrm{i}_{\mathrm{IN}} \\
& 23.5 \text { times smaller gain }
\end{aligned}
$$

High Input Impedance Circuit

Write a Node Equation for I_{E}

Write a Loop Equation for I_{IN}

Find $\mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}^{\prime}{ }_{s}$

$\mathbf{V}_{\text {OUT }} / \Delta \mathbf{V}^{\prime}{ }_{\mathrm{S}}=\left[1 /\left(\mathbf{R}_{\mathrm{S}}+\mathbf{R}_{\text {SA }}+\mathbf{R}_{\text {IN EQ }}\right)\right](-\beta) \mathbf{R}_{\text {LOAD }}$

A nalysis of Multistages

Background on Two-Ports

- Designed for cascading components
» Hi-Fi components
» IC stages of amplifier circuit
- Based on Matrix Multiplication
$\mathbf{V}_{1}=Z_{11} I_{1}+Z_{12} I_{2} \quad I_{1}=Y_{11} V_{1}+Y_{12} V_{2} \quad V_{1}=H_{11} I_{1}+H_{12} V_{2}$
$\mathbf{V}_{\mathbf{2}}=\mathbf{Z}_{21} \mathbf{I}_{1}+\mathbf{Z}_{22} \mathbf{I}_{2} \quad \mathrm{I}_{2}=\mathbf{Y}_{21} \mathbf{V}_{1}+\mathrm{Y}_{22} \mathbf{V}_{2} \quad \mathrm{I}_{2}=\mathrm{H}_{21} \mathrm{I}_{1}+\mathrm{H}_{22} \mathbf{V}_{2}$
Impedance Admittance Hybrid_1 (transresistance)
(transconductance)
(current 1-2)

Two-Port Equivalent Circuits

Finding the Two-Port Parameters

H_{11} is found by taking V_{1} over I_{1} when V_{2} is zero.
H_{12} is found by taking V_{1} over V_{2} when I_{1} is zero.

N ote: The conditions to determine each matrix

 element arise from the terminal variables multiplying the right hand side.
Hybrid Two-Port for a Resistor

Find H_{11} with R_{E} and $\mathrm{R}_{\text {OUT }}$

$$
\sum_{=}^{\mathrm{R}_{\mathrm{I}} \mathrm{~N} \text { ode }}
$$

$$
\begin{aligned}
& \mathbf{V}_{1}=H_{11} I_{1}+H_{12} V_{2} \\
& I_{2}=H_{21} I_{1}+H_{22} V_{2}
\end{aligned}
$$

$$
\begin{aligned}
& V_{X}=(\beta+1) i_{\text {IN }} /\left(1 / R_{S}+1 / R_{\text {OUT }}\right) \\
& V_{\text {IN }}=i_{\text {IN }} R_{\text {IN }}+V_{X}
\end{aligned}
$$

$V_{2}=0:$
$H_{11}=\left.\left(V_{\text {IN }} / i_{\text {IN }}\right)\right|_{V_{2}=0}=$
$\mathbf{R}_{\text {OUT }}$ in || with \mathbf{R}_{E}
Node Eq. For \mathbf{V}_{x}
$\mathbf{i}_{\text {IN }}-\mathbf{V}_{\mathrm{X}} / \mathbf{R}_{\mathrm{S}}-\mathbf{V}_{\mathrm{X}} / \mathbf{R}_{\text {OUT }}+\beta \mathbf{i}_{\text {IN }}=\mathbf{0}$

N ote: $\mathbf{R}_{\text {IN }}$ depends on $\mathbf{R}_{\text {OUT }}$ when the output feeds back to the input.

Find H_{12} with R_{E} and $\mathrm{R}_{\text {OUT }}$

Multistage Amplifiers

This example from the reading in Chapter 8 this week.

Classification of Two-Port Amplifiers

Voltage Amplifier

Current Amplifier

Voltage

Current

Transconductance

Transresistance Amplifier

Transresistance

Overview and Circuit Value Added

