
EECS 105 – Microelectronic Devices and Circuits

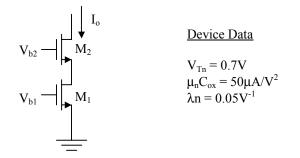
Spring 2001, Prof. A. R. Neureuther Dept. EECS, 510 Cory 642-4590 UC Berkeley OH M11, (Tu2), W2, Th2, F11 Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee105/

Homework Assignment # 12, Due April 20, 2001

11.1 Multistage Amplifier

Design a multistage amplifier to convert a 1pA photodiode current at the input into an output signal larger than 1V on a 100 Ω telephone line. The source resistance from the photodiode is extremely high and can be neglected. The multistage amplifier needs to have an input stage that has low input impedance and a voltage buffer for the output.

You should use the building blocks in the table below to design your multistage amplifier


	CE	СВ	CC
$R_{in}(k\Omega)$	100	0.1	100
$R_{out}(k\Omega)$	400	400	0.1
Controlled source	G _m =4mS	$ A_i =1$	$A_v = 1$

- (1) At least how many building blocks are needed for the multistage amplifier?
- (2) Draw the small-signal model of the multistage amplifier based on the parameters given in the table.
- (3) What is the overall transresistance?

11.2 Cascode Current Source

A cascode current source is shown along with the n-channel device data. Assume that the back gates are all shorted to their respective sources and M_1 and M_2 have the same W/L. If V_{b2} = 1.9V, and V_{DS1} =2 V_{DS1} sat

- (1) Find V_{b1} and W/L such that $I_0=1mA$
- (2) Calculate the incremental source resistance of the current source
- (3) Draw the small-signal model of the current source
- (4) If W/L of M₁ and M₂ are doubled and I_o is kept at 1mA, how does the incremental source resistance of the current source change?
- (5) If I_o is reduced to 0.5mA and W/L of M1 and M2 remain the same as in part (1), how does the incremental source resistance of the current source change?

12.3 Current Sources

Design current sources which provide $20\mu A$ and $50\mu A$ DC currents and a current sink with a DC current value of $100\mu A$ using the minimum number of MOS transistors. You are given one reference current source of $10\mu A$ with which you can use to derive the others. V_{DS_sat} of current sources should be 0.6V, V_{DS_sat} of the current sink should be 0.3V.

$$\label{eq:constraint} \begin{split} & \underline{Device\ data} \\ & \overline{V_{Tn}} = 1V \\ & V_{Tp} = -1V \\ & \mu_n C_{ox} = 50 \mu A/V^2 \\ & \mu_p C_{ox} = 25 \mu A/V^2 \\ & \lambda_n = \lambda_p = 0.01 V^{-1} \end{split}$$

- (1) Draw the schematic of the current sources and specify W/L of all MOS devices
- (2) Calculate r_{oc} of all current sources