

EECS 105 – Microelectronic Devices and Circuits Spring 2001, Prof. A. R. Neureuther Dept. EECS, 510 Cory 642-4590 UC Berkeley Office Hours M11, (Tu2), W2, Th2, F11 Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee105/

Homework Assignment # 13, Due April 27, 2001

Use the following parameters for all BJT devices.

NPN	PNP
β=100	β=50
V _{CE-SAT} =0.1V	V _{EC-SAT} =0.1V
V _{BE} =0.7V	V _{EB} =0.7V
V _A =20V	V _A =25V
W _B =1µm	W _B =1µm
N _{ED} =10 ¹⁹ /cm ³	N _{EA} =10 ¹⁹ /cm ³
N _{BA} =5x10 ¹⁷ /cm ³	N _{BD} =5x10 ¹⁷ /cm ³
N _{CD} =10 ¹⁶ /cm ³	N _{CA} =10 ¹⁶ /cm ³

13.1) **Common Emitter Design**

Consider the following circuit:

Find $I_{SUP}\!,\,V_{BIAS}$ and A, the area of the base, such that the following constraints are met: $V_{OUT}\!\!=\!\!0V$

 $r_{oc}=r_{o}$

Overall voltage gain of at least 75 at low frequencies

Lowest frequency pole at 50MHz or higher (the only capacitor you should consider is C_{π})

Minimize the large signal power dissipation

13.2) Multistage Frequency Response with Open-Circuit Time Constants Consider the following circuit:

Assuming that $V_{OUT}=0$, $r_{oc1}=r_{o1}$, $r_{oc2}=r_{o2}$, and the area of each base is 10µm x 10µm, find this circuit's lowest frequency pole and its –3dB frequency, both in Hz. You should consider the effect of C_{π} and C_{μ} but not the capacitance to the substrate.

13.3) Miller Approximation

Find the lowest frequency pole for each of the following circuits. a)

b)