

EECS 105 – Microelectronic Devices and Circuits

Spring 2001, Prof. A. R. Neureuther Dept. EECS, 510 Cory 642-4590 UC Berkeley OH M11, (Tu2), W2, Th2, F11 Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee105/

Homework Assignment # 14, Due May 4, 2001

MOS Device Data

$$\begin{split} V_{Tn} &= -V_{Tp} = 1V, \ \mu_n C_{ox} = 50 \mu A/V^2, \ \mu_p C_{ox} = 25 \mu A/V^2, \ -2\varphi_p = 2\varphi_n = 0.8V, \\ \lambda_n &= \lambda_p = 0.05 V^{-1} @ \ L = 2 \mu m, \ C_{ox} = 2.3 fF/\mu m^2, \ C_{jn} = 0.1 fF/\mu m^2, \ C_{jp} = 0.3 fF/\mu m^2, \\ C_{jswn} = 0.5 fF/\mu m, \ C_{jswp} = 0.35 fF/\mu m, \ C_{ovn} = 0.5 fF/\mu m, \ C_{ovp} = 0.5 fF/\mu m, \ L_{diffn} = L_{diffp} = 6 \mu m \end{split}$$

 $R_{oc} = \infty$ for all current sources

14.1 Frequency Response of Common-Gate Amplifier

Given an NMOS common-gate amplifier with a current source supply as shown in the figure (The bulk node of the NMOS transistor is tied to its source). Assume that I_{BIAS} is set such that $i_O=0A$, $I_{SUP}=200\mu A$, $W/L=100\mu m/2\mu m$. Find the low frequency current gain and ω_{3dB} for

(1) Rs=100 Ω and R_L=10k Ω (2) Rs=1k Ω and R_L=100k Ω (3) Rs=500 Ω and R_L=5k Ω

(3) Rs=500 Ω and R_L=5k Ω

14.2 Frequency Response of Common-Source Voltage Amplifier

You are given an NMOS common-source voltage amplifier with a current source supply with $I_{SUP}=100\mu A$. The NMOS device has a W/L=40 μ m/2 μ m. The source resistance $R_s=10k\Omega$ and the load resistance $R_L\rightarrow\infty$. Assume the NMOS device is operating in saturation region.

- (1) Calculate the open-circuit voltage gain at low frequency.
- (2) Calculate ω_{3dB} using the Miller Approximation and considering only C_{gs} and C_{gd} of the NMOS device
- (3) Repeat (2) using the open-circuit time-constant method

14.3 Frequency Response of Cascode Amplifier

Repeat 14.2 using the cascode amplifier shown in the figure below. W/L= 40μ m/2 μ m and the bulk node is tied to its source for both NMOS devices.

- (1) Calculate the open-circuit voltage gain at low frequency.
- (2) Calculate ω_{3dB} using the open-circuit time-constant method

