# EECS 105 - Microelectronic Devices and Circuits 

Homework Assignment \# 14, Due May 4, 2001

## MOS Device Data

$\mathrm{V}_{\mathrm{Tn}}=-\mathrm{V}_{\mathrm{Tp}}=1 \mathrm{~V}, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=25 \mu \mathrm{~A} / \mathrm{V}^{2},-2 \phi_{\mathrm{p}}=2 \phi_{\mathrm{n}}=0.8 \mathrm{~V}$,
$\lambda_{\mathrm{n}}=\lambda_{\mathrm{p}}=0.05 \mathrm{~V}^{-1} @ \mathrm{~L}=2 \mu \mathrm{~m}, \mathrm{C}_{\mathrm{ox}}=2.3 \mathrm{fF} / \mu^{2}, \mathrm{C}_{\mathrm{jn}}=0.1 \mathrm{fF} / \mu \mathrm{m}^{2}, \mathrm{C}_{\mathrm{jp}}=0.3 \mathrm{fF} / \mu \mathrm{m}^{2}$,
$\mathrm{C}_{\mathrm{jswn}}=0.5 \mathrm{fF} / \mu \mathrm{m}, \mathrm{C}_{\mathrm{jswp}}=0.35 \mathrm{fF} / \mu \mathrm{m}, \mathrm{C}_{\mathrm{ovn}}=0.5 \mathrm{fF} / \mu \mathrm{m}, \mathrm{C}_{\mathrm{ovp}}=0.5 \mathrm{fF} / \mu \mathrm{m}, \mathrm{L}_{\text {diffn }}=\mathrm{L}_{\text {diffp }}=6 \mu \mathrm{~m}$
$\mathrm{R}_{\mathrm{oc}}=\infty$ for all current sources

### 14.1 Frequency Response of Common-Gate Amplifier

Given an NMOS common-gate amplifier with a current source supply as shown in the figure (The bulk node of the NMOS transistor is tied to its source). Assume that $\mathrm{I}_{\text {BIAS }}$ is set such that $\mathrm{i}_{\mathrm{O}}=0 \mathrm{~A}, \mathrm{I}_{\text {SUP }}=200 \mu \mathrm{~A}$, $\mathrm{W} / \mathrm{L}=100 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$. Find the low frequency current gain and $\omega_{3 \mathrm{~dB}}$ for
(1) $\mathrm{Rs}=100 \Omega$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$
(2) $\mathrm{Rs}=1 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$
(3) $\mathrm{Rs}=500 \Omega$ and $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$


### 14.2 Frequency Response of Common-Source Voltage Amplifier

You are given an NMOS common-source voltage amplifier with a current source supply with $\mathrm{I}_{\text {SUP }}=100 \mu \mathrm{~A}$. The NMOS device has a $\mathrm{W} / \mathrm{L}=40 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$. The source resistance $\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$ and the load resistance $R_{L} \rightarrow \infty$. Assume the NMOS device is operating in saturation region.
(1) Calculate the open-circuit voltage gain at low frequency.
(2) Calculate $\omega_{3 \mathrm{~dB}}$ using the Miller Approximation and considering only $\mathrm{C}_{\mathrm{gs}}$ and $\mathrm{C}_{\mathrm{gd}}$ of the NMOS device
(3) Repeat (2) using the open-circuit time-constant method


### 14.3 Frequency Response of Cascode Amplifier

Repeat 14.2 using the cascode amplifier shown in the figure below. $\mathrm{W} / \mathrm{L}=40 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$ and the bulk node is tied to its source for both NMOS devices.
(1) Calculate the open-circuit voltage gain at low frequency.
(2) Calculate $\omega_{3 \mathrm{~dB}}$ using the open-circuit time-constant method


