EEl 105 Spring 2001 - Homework 1 solution by William Holtz

1.2)

Voltage divider

$$
5 V_{\text {in }}\left(\frac{2 K}{1 K+2 k}\right)=V_{\text {out }}
$$

(a) 3.33 = Vout/vin
short independent sources before finding Rout

(b) Rout $=667 \Omega$
for Rim only right hand side of the circuit matters as the left hand side is only connected by one wire and the right hand side has no dependent sources to receive information from the left hand side \therefore only the 100Ω resistor is left
(c) $\operatorname{Rin}=100 \Omega$

1.3)

substitute z-port from 1.2 d

Input voltage divider $V_{s}\left(\frac{R_{\text {in }}}{R_{s}+R_{\text {in }}}\right)=V_{\text {in }}$
Output voltage divider $3,33 \mathrm{Vin}\left(\frac{R_{L}}{R_{\text {out }}+R_{L}}\right)=$ Vout

$$
V_{s}\left(\frac{R_{\text {in }}}{R_{\text {s }}+R_{\text {in }}}\right) 3.33\left(\frac{R_{L}}{R_{\text {out }}+R_{L}}\right)=V_{\text {out }}
$$

(a) $\frac{V_{\text {out }}}{V_{s}}=\left(\frac{R_{\text {in }}}{R_{s}+R_{\text {in }}}\right)(3.33)\left(\frac{R_{L}}{R_{\text {out }}+R_{L}}\right)=1.47$
1.4) first and last segment are the same so Rim and Rout stay the same. Just need to find $\frac{\text { Lout }}{V_{\text {in }}}$

$$
I_{\text {in }}=\frac{V_{\text {in }}}{100} ; V_{x}=10 I_{\text {in }}\left(\frac{10000 \cdot 100}{10000+100}\right) ; V_{\text {out }}=5 V_{x}\left(\frac{2000}{1000+2000}\right)
$$

$$
5 \cdot 10 \cdot \frac{V_{\text {in }}}{100}(99)\left(\frac{2}{3}\right)=V_{\text {out }}
$$

A negative sign is missing from this problem. V $x=-10$ lin(...) $=>-33=$ Vout $/$ Yin

$$
33=\frac{V_{\text {out }}}{V_{\text {in }}}
$$

