Homework \#2 Solution

2.1 CMOS process flow

P-type substrate

2.2 CMOS circuit

2.3 IC resistors

b) Polysilicon: 14 squares, 2 contact regions \& 1 corner

Metal: 2 squares, 2 contact regions
$\mathrm{N}+$ doping: 3 squares, 2 contact regions
Number of squares:
$\mathrm{N}_{\text {polysilicon }}=14+2 \times 0.65+0.56=15.86$
$\mathrm{N}_{\text {metal }}=2+2 \times 0.65=3.3$
$\mathrm{N}_{\mathrm{N}+}=3+2 \times 0.65=4.3$
$\mathrm{R}_{\mathrm{BC}}=10 \Omega \times 15.86+0.01 \Omega \times 3.3+100 \Omega \times 4.3=588.633 \Omega$
Since the resistance of metal is very small, you can neglect metal resistance in your calculation

2.4 IC resistors

a) The sheet resistance of $\mathrm{N}+$ doping $\mathrm{R}_{\mathrm{N}+}$ is $100 \Omega /$ square, which is defined as a function of electron mobility μ_{n} and doping concentration N_{d} :

$$
R_{N+}=\frac{1}{q \cdot \mu_{n} \cdot N_{d} \cdot t}
$$

where $q=1.6 \cdot 10^{-19} C, t=0.5 \cdot 10^{-4} \mathrm{~cm}$

$$
N_{d}=\frac{1}{q \cdot \mu_{n} \cdot R_{N+} \cdot t}=\frac{1}{1.6 \cdot 10^{-19} C \cdot \mu_{n} \cdot 100 \Omega \cdot 0.5 \cdot 10^{-4} \mathrm{~cm}}
$$

Since electron mobility is a function of the doping concentration, several iterations are needed in your calculation to get within 20%.

The other way to solve this problem is to draw electron mobility as a function of the Doping concentration and compare it with the curve of electrons in Figure 2.8. The doping concentration at the cross point of the two curves will be the solution to this problem.

$$
N_{d} \approx 1.5 \cdot 10^{19} \mathrm{~cm}^{3}
$$

b) $R_{1}=\overline{R_{1}} \pm \delta_{R 1}=10 \mathrm{k} \Omega \pm 500 \Omega$
$R_{2}=\overline{R_{2}} \pm \delta_{R 2}=5 k \Omega \pm 400 \Omega$
$R_{1}+R_{2}=\left(\overline{R_{1}} \pm \delta_{R 1}\right)+\left(\overline{R_{2}} \pm \delta_{R 2}\right)=\left(\overline{R_{1}}+\overline{R_{2}}\right) \pm \delta_{R 1} \pm \delta_{R 2}=\overline{R_{1}+R_{2}} \pm \delta_{R 1+R 2}$ where $\overline{R_{1}}+\overline{R_{2}}=\overline{R_{1}+R_{2}}$ and $\pm \delta_{R 1} \pm \delta_{R 2}= \pm \delta_{R 1+R 2}$

If $\delta_{R 1}$ and $\delta_{R 2}$ are independent and $\mathrm{R}_{1}, \mathrm{R}_{2}$ have the Gaussian, or normal, probability distribution.

$$
\delta_{R 1+R 2}=\sqrt{\delta_{R 1}^{2}+\delta_{R 2}^{2}}=\sqrt{(500 \Omega)^{2}+(400 \Omega)^{2}} \approx 640 \Omega
$$

The uncertainty in $\mathrm{R}_{1}+\mathrm{R}_{2}$ is 640Ω.

