

## Homework Assignment # 4, Due February 16, 2001

Unless stated otherwise, use the following parameters in the problems n-channel MOSFET:

$$\mu_n C_{ox} \!\!=\!\! 50 \mu A/V^2, \, V_{TOn} \!\!=\!\! 1.0 V, \, \gamma_n \!\!=\!\! 0.6 V^{1/2}, \, \lambda_n \!\!=\!\! (0.1/L) V^{-1} \, (\text{L in } \mu \text{m}), \, \varphi_p \!\!=\!\! -0.42 V$$
 p-channel MOSFET:

$$\mu_p C_{ox} = 25 \mu A/V^2, \ V_{TOp} = -1.0V, \ \gamma_p = 0.6 V^{1/2}, \ \lambda_p = (0.1/L) V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n = 0.42 V^{-1} \ (\textit{L in } \mu \textit{m}), \ \phi_n =$$

#### 4.1 PN Junction

For a PN junction with  $N_d=10^{15} cm^{-3}$  and  $N_a=10^{17} cm^{-3}$ 

- a) calculate the built-in potential  $\phi_B$  of the PN junction
- b) calculate the junction depth in thermal equilibrium
- c) Derive the relationship between the junction depth and the applied reverse voltage, assuming that all of the voltage is dropped on the low doping side

#### **4.2 MOSFET Characteristics**

For MOSFETs (a), (b), (c), (d) with terminal voltages in Figure 4.2, determine (1) the operating region (cutoff, triode, or saturation) and (2) the drain current  $I_D$ .



Figure 4.2

### **4.3 MOS Parameter Estimation**

Consider the I-V characteristics of a NMOS transistor (W=100 $\mu$ m, L=20 $\mu$ m). Estimate the algebraic parameter *KP* in the SPICE model equations (pp 239)

- a) Estimate KP from slope at  $V_{ds}=0V$
- b) Estimate KP from data with  $V_{ds}=V_{ds max}=5V$



# 4.4 Large Signal Model v.s. Small Signal Model

Consider an amplifier with a resistive load

- a) Find an expression for the large signal voltage V<sub>out</sub>, assuming the MOSFET is in the triode region
- b) If V<sub>in</sub>=3V, find V<sub>out</sub> and I<sub>out</sub> (current flow through the MOSFET)
- c) Linearize the resulting equation to find  $\Delta V_{out}/\Delta V_{in}$  ( $V_{in}=V_{in0}+/\Delta V_{in}$ ,  $V_{out}=V_{out0}+/\Delta V_{out}$ , ignore products such as  $\Delta V_{out}\times\Delta V_{in}$ )
- d) Instead linearize MOS equation alone to get model in Figure 4.22, find g<sub>m</sub>, and r<sub>o</sub>
- e) Substitute the model in d) for the MOS circuit symbol and solve for small signal  $V_{\text{out}}/V_{\text{in}}$

