Homework Assignment \# 4, Due February 16, 2001

Unless stated otherwise, use the following parameters in the problems
n-channel MOSFET:

$$
\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TOn}}=1.0 \mathrm{~V}, \gamma_{\mathrm{n}}=0.6 \mathrm{~V}^{1 / 2}, \lambda_{\mathrm{n}}=(0.1 / \mathrm{L}) \mathrm{V}^{-1}(\mathrm{~L} \text { in } \mu m), \phi_{\mathrm{p}}=-0.42 \mathrm{~V}
$$

p-channel MOSFET:

$$
\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=25 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TO}}=-1.0 \mathrm{~V}, \gamma_{\mathrm{p}}=0.6 \mathrm{~V}^{1 / 2}, \lambda_{\mathrm{p}}=(0.1 / \mathrm{L}) \mathrm{V}^{-1}(L \text { in } \mu m), \phi_{\mathrm{n}}=0.42 \mathrm{~V}
$$

4.1 PN Junction

For a PN junction with $\mathrm{N}_{\mathrm{d}}=10^{15} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{a}}=10^{17} \mathrm{~cm}^{-3}$
a) calculate the built-in potential ϕ_{B} of the PN junction
b) calculate the junction depth in thermal equilibrium
c) Derive the relationship between the junction depth and the applied reverse voltage, assuming that all of the voltage is dropped on the low doping side

4.2 MOSFET Characteristics

For MOSFETs (a), (b), (c), (d) with terminal voltages in Figure 4.2, determine (1) the operating region (cutoff, triode, or saturation) and (2) the drain current I_{D}.

(a)

(c)

(b)

(d)

Figure 4.2

4.3 MOS Parameter Estimation

Consider the I-V characteristics of a NMOS transistor ($\mathrm{W}=100 \mu \mathrm{~m}, \mathrm{~L}=20 \mu \mathrm{~m}$). Estimate the algebraic parameter $\boldsymbol{K} \boldsymbol{P}$ in the SPICE model equations (pp 239)
a) Estimate KP from slope at $\mathrm{V}_{\mathrm{ds}}=0 \mathrm{~V}$
b) Estimate KP from data with $\mathrm{V}_{\mathrm{ds}}=\mathrm{V}_{\mathrm{ds} _\max }=5 \mathrm{~V}$

4.4 Large Signal Model v.s. Small Signal Model

Consider an amplifier with a resistive load
a) Find an expression for the large signal voltage $\mathrm{V}_{\text {out }}$, assuming the MOSFET is in the triode region
b) If $\mathrm{V}_{\text {in }}=3 \mathrm{~V}$, find $\mathrm{V}_{\text {out }}$ and $\mathrm{I}_{\text {out }}$ (current flow through the MOSFET)
c) Linearize the resulting equation to find $\Delta \mathrm{V}_{\text {out }} / \Delta \mathrm{V}_{\text {in }}\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {in } 0}+/ \Delta \mathrm{V}_{\text {in }}\right.$, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {out } 0}+/ \Delta \mathrm{V}_{\text {out }}$, ignore products such as $\Delta \mathrm{V}_{\text {out }} \times \Delta \mathrm{V}_{\text {in }}$)
d) Instead linearize MOS equation alone to get model in Figure 4.22, find g_{m}, and r_{o}
e) Substitute the model in d) for the MOS circuit symbol and solve for small signal $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}$

